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0
From the Editor

Scott Kominers *09

Harvard University

Cambridge, MA 02138
kominers@fas.harvard.edu

It is my great pleasure to introduce the inaugural issue of The Harvard College Mathematics Review
(HCMR). Since I first proposed the journal, 1 have hoped that The HCMR would help students learn
and appreciate advanced mathematics. True to the magazine’s mission, this issue contains expository
articles on topics drawn from undergraduate-level foundations and surveys of undergraduate research,
as well as student-appropriate original problems.

Back in high school, my mathematics teacher gave me her collection of old issues of The College
Mathematics Journal and The American Mathematical Monthly. 1 dove in, skimming abstract after
abstract. Every so often, I would manage to find an article with an introduction I understood.

I would always start to read these articles, but I never quite had the mathematical background to
finish them. Nonetheless, it was exciting to see what “mathematics” really is. Reading about a range
of fields helped awaken me to the depth and beauty of mathematics.

I go back to that same stack of journals annually. Each time I return, I find that I understand more
than I did the last time. This is how math evolves for me. As I learn, I feel myself approach the day
when I can open a journal to a random article and comprehend it in its entirety.

1 would appreciate any commentary or feedback you have. Please direct your comments and ques-
tions to hemr@hes .harvard.edu or to me personally at kominers@fas.harvard.edu. I
also invite you to submit to future issues. We publish articles, short notes, and problems in any field
of pure or applied mathematics at the undergraduate level. Please see the inside cover for submission
guidelines.

We at The HCMR are greatly indebted to Dean Benedict H. Gross, who has volunteered his time,
advice, and expertise throughout the production process and to Professor Peter Kronheimer, who has
been with The HCMR as an advisor since our earliest days. We also extend our warmest thanks to
Professor Noam D, Elkies for guidance, commentary, and of course for his fantastic feature article
on “The ABC’s of Number Theory,” and to Professor Dennis Gaitsgory for sharing one of his early
teaching experiences in our endpaper. We are grateful to Dean Paul J. McLoughlin I for his admin-
istrative help in establishing The HCMR organization and to Mr. Christopher C. Mihelich ’02 for
his I£TEX advice. Finally, we could never have produced this issue without the generous support of
The Harvard Mathematics Department.

Every one of us currently involved in The HCMR is a founding member; we are proud and excited
to have seen our project finally come to fruition. QED.

Scott Kominers *09
Editor-In-Chief, The HCMR



STUDENT ARTICLE
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Dunking Donuts: Culinary Calculations
of the Euler Characteristic

Alexander P. Ellis *077
Harvard University
Cambridge, MA 02138
apellis@gmail.com

Abstract

Motivated by a remarkable 18th-century result about polyhedra known as Euler’s formula, we will
develop the notion of the Euler characteristic x in the more modern context of CW complexes. The
fact that x is a homotopy invariant gives an easy (perhaps trivializing) proof of Euler’s formula. We
then develop two non-elementary methods of computing x in specific cases: Morse theory and the
Poincaré-Hopf Index Theorem. Both will be used to compute the Euler characteristic of closed ori-
entable surfaces, using culinary analogies. In an appendix, the former will also be used to compute the
Euler characteristic of real projective space.

Most of this paper requires only an understanding of multivariable calculus and basic point-set
topology. While the reader would be aided by a modest background in differential and algebraic topol-
ogy at a few points, the degree of formality does not require this.!

1.1 The Euler Characteristic and CW Complexes

The Euler characteristic x (P) of a polyhedron P is defined to be the number F’ of its faces, minus
the number E of its edges, plus the number V' of its vertices:

x(P)=F—-E+V.
We consider any n-sided polygon to be “filled in,” so it has one face. Then we immediately have:
x(anyn-gony=1-n+n=1

We have easily seen that the Euler characteristic of a polygon is independent of the number and ar-
rangement of these sides; less obviously, any convex polyhedron satisfies

x (any convex polygon) = 2.

This fact, known as Euler’s formula, was known to Leonhard Euler (1707-1783), the namesake of
x. From Euler’s formula, it is not hard to prove the classification of Platonic solids. (The original

t Alexander P. Ellis, Harvard *07, is a mathematics concentrator and English minor. Originally from New York City, Alex
attended Stuyvesant High School. Starting in the fall, he will spend a year studying at Cambridge University. in Part III of the
Mathematical Tripos, after which he plans to return to the United States to pursue a PhD in pure mathematics. His mathematical
interests are primarily in geometry and topology, and in their connections with other branches of mathematics, as well as with
physics. He also has a knack for counting the number of Ietters in words quickly.

¥ Diagrams for this article were created in METAPOST by Graphic Artist Zachary Abel "10, based on drawings submitted
by the author.



classification argument, which proceeds by adding up angles at a vertex, appears in Book XIII of
Euclid’s Elements.)

There is a more modemn definition of x which generalizes it to a homotopy invariant of CW com-
plexes. Once we see what a CW complex is, all this means is that stretching, bending, folding, and
compressing our space will not change its Euler characteristic; we may not, however, cut or glue.

We will define the notion of a CW complex inductively. A zero-dimensional CW complex is just a
set of points, also called the O-skeleton. The data of a one-dimensional CW complex X is a 0-skeleton
Xo, a set of closed 1-discs (closed intervals) {I4}aca.and a set of corresponding maps

{¢a . 61& i XO}QGA

taking the boundary of each closed 1-disc to the O-skeleton. The complex X (or its 1-skeleton X;) is

then the quotient space
= (XOH 11 Ia) /{de}aea:

a€A

(The symbol [] just means a union of disjoint topological spaces, where the open sets are unions of
open sets taken from either space.) When we quotient by a family of maps, we are quotienting by the
equivalence relation which identifies each point of each 81, with its image under the corresponding
map ¢,. Geometrically, we are just attaching each closed 1-disc I, to Xy by gluing its endpoints to
their images under ¢,. Inductively, an n-dimensional CW complex is given by an (n — 1)-skeleton
Xn-1, aset of {Dg}gep of closed n-discs,! and attaching maps {¢3 : 8D — Xn-1}ges. The
complex is then the quotient space

X=|Xo1 U [] Ds | {65} sen-

B€eB

Further details can be found in Chapter 0 of [Hal.
An example which will be useful in just a moment: the n-sphere S™ = {v € R**1 : || = 1} is
homeomorphic to the CW complex given by:

one 0-cell, the point p
one n-cell D with attaching map ¢(z) = p forall z € 4D.

In other words, we start with the closed n-disc D, and glue the entire bounding (n — 1)-sphere to a
point.

Now say we have an n-dimensional CW complex Y whose k-cells are given by the set Ci. Write
Card(Cy) for the cardinality for Cy, that is, the number of k-cells. Furthermore, say thateach Cy is a
finite set. Then we define the Euler characteristic of Y to be

n

Z k Card(Cy).

This generalizes our earlier definition, since vertices, edges, and faces can be taken to be the 0-, 1-, and
2-cells of a two-dimensional CW complex It turns out (see section 2.2 of [Ha]) that x is a homotopy
invariant in the sense mentioned earlier.? In particular, homeomorphic CW complexes have the same y,

1By n-disc, we simply mean a space homeomorphic to the unit ball in R™, that is, {v € R™ : |v| < 1}. When we add the
adjective closed, we simply mean the closure in R™ of such a set.

2For those familiar with cellular homology, the proof is not hard. One can show purely algebraically that given a chain
complex Co — Cy — Cz — «-- of finitely generated abelian groups, _(~1)% rk(Cy) = Y(~1)* rk(H}), where Hy, is
the k-th homology group of the complex. In the case of the cellular complex, C, is simply a freely generated Z-module with
rank equal to the number of k-cells, so x(X) = 3 (~1)F rk(Cr (X)) = S2(=1)* rk(Hy(X)). And since the Betti numbers

= rk(H (X)) are homotopy invariants, so is the Euler characteristic x(X).

4



since every homeomorphism is certainly a homotopy equivalence. Viewed conversely, we can compute
x of a given space by choosing a CW complex on it, and our computation will not depend on our choice
of CW structure. (This is tautologous, since by “choosing a CW structure” on a space we merely mean
finding a CW complex homeomorphic to our space.)

As a corollary to all of this, we have an immediate proof of Euler’s formula, that all convex poly-
hedra “miraculously” have Euler characteristic equal to 2. Indeed, any convex polyhedron can be
“smoothed out” by a homotopy equivalence (in fact a homeomorphism) into a 2-sphere. Then as ex-
plained above, the 2-sphere has one 0-cell and one 2-cell, and thus has Euler characteristic

x(8)=1-0+1=2.
Similarly and more generally, we have

0 nisodd
x(S™) = { .
2 mniseven.

1.2 A Little Morse Theory

In a landmark 1934 paper [Mo}, Marston Morse (1892-1977) initiated the theory which came to bear
his name. The basic idea of Morse theory is to study a smooth manifold by a certain class of smooth
functions on it, called Morse functions. It turns out that the typical smooth function is a Morse function.

Let M be a smooth (C*°) manifold, and let f : M — R be a smooth function on M. Recall that a
critical point of f is a point p such that df,, is a degenerate linear map. In this case, this is equivalent to

saying that in a local coordinate system {z1,...,z,} around p, all the first partial derivatives vanish:
of of
i itical point of & —@p)=...= =0.
p is a critical point of f a1, (p) Br. (p)

In single-variable calculus, we measure the behavior of a function at a critical point by looking at the
sign of the second derivative, if non-vanishing. If the second derivative vanishes, we need to consider
higher derivatives (think of f;(z) = 2 and fo(z) = z* at z = 0). Analogously, we want to consider
non-degenerate critical points, which are defined to be critical points where the matrix of second
partial derivatives determines a non-degenerate bilinear form:

32
the critical point p of f is non-degenerate & det ——f(p) # 0,
Oz;0r;

where % and j are the row and column indices. Then the class of functions which we can easily work
with are those whose critical points are all non-degenerate; we call these Morse functions. The obvious
generalization of looking at the sign of the single-variable first derivative is to look at the signs of the
eigenvalues of df,. However, this would force us to worry about existence of real eigenvalues, and this
may not even be stable under change of coordinates. Instead we appeal to a famous and convenient
result which guarantees a “nice” set of coordinates.

Lemma 1. (The Morse Lemma.) Let p be a non-degenerate critical point of the smooth function
f : M — R. Then there exists a neighborhood U of p and a coordinate system {yy,...,yn} on U
centered at y such that on U,

f=fo+y++... +4.

Furthermore, any such coordinate system will give the same numbers of positive and negative terms in
the above.



Figure 1.1: Dunking a donut (torus) into coffee

Since our focus is on different tools for computing the Euler characteristic and not on a rigorous
development of Morse theory, we refer the reader to section 2 of [Mi} for a proof. We call the number
of negative terms MlInd(f; p), the Morse index of f at p; intuitively, the Morse index measures the
number of independent directions in which f decreases.

For any real number a, let

M* = f71((~00,a]).
The intuitive picture is a follows. Say we are dunking a donut into a cup of coffee, as in Figure I; the

manifold in question is the torus T which is the surface of this donut. Define the function h: T — R
by

h(p) = the height of the submerged part of T when p first touches the coffee
= the vertical distance from the bottom of the donut to p.
We will call h, and its later generalizations, the “dunking function.” It is not hard to check that A

is a Morse function. Figure 2 shows T° for various values of a. The set of critical points of A is
{Po,p1,p2, p3}, as pictured. Their indices are:

MiInd(h;po) =0
MInd(h;p1) = 1
MInd(h;pg) =1
MInd(h; p3) =2

This is not hard to see: p is a local (in fact, global) minimum, so any direction is a direction of increase,
so it has index 0. p; decreases if you walk down towards py, and increases if you want up the inside of
the hole towards ps, so it has index 1. And so forth.

The first major application of the Morse index, and the one we care about for our purposes, is that
it allows you to construct a CW complex homotopy equivalent to M.

Theorem 2. Let p be a critical point of the Morse function f : M — R, and set a = f (p). Suppose
S~ a—e€,a+ €]) for some € > 0 is compact and contains no critical points other than p. Then M4+¢
has the homotopy type of M€, with a cell of dimension MInd(f; p) adjoined.

(For a proof, see section 3 of [Mi].) So a Morse function gives us a CW structure on M, up to
homotopy equivalence. And since x is a homotopy invariant, this is as good as we need. Combined with

6
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Figure 1.2: The torus, at and between the critical points of its dunking map

the fact that every smooth manifold admits Morse functions (see section 6 of [Mi]), we immediately
obtain:

Corollary 3. Every smooth manifold is homotopy equivalent to a CW complex.

This implies that the Euler characteristic is defined for all smooth manifolds. If we set
Ak (f) = the number of critical points of f with Morse index k

and apply Theorem 2, we have
n

(M) = (1) Ax.

k=0

Define the surface ¥, of genus g to be the surface of a g-holed donut; for example, ¥o = 52 (a “donut
hole”) and ¥; = T'. Consider the “dunking function™ h above, but now more generally on any ¥,;
see Figure 3. h always has exactly one maximum and one minimum, and two saddle points (points of
Morse index 1) for each hole; we have

Ao(h) =1

Ai(h) =29

Ax(h) =1
x(Eg)=1-29+1=2-2g

1.3 Vector Fields and the Poincaré-Hopf Index Theorem

We now turn to smooth (tangent) vector fields on M. We will think of Af as embedded in some RN
and the vector fields as tangent to M C R™ (if you are aware of the terminology, you may think more
abstractly of the vector fields as sections of the tangent bundle T'Af). For this section only we restrict
our attention to the case where M is two-dimensional, but we will indicate the correct generalization
to higher dimensions.
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Figure 1.3: Surfaces of higher genus; dunking a two-holed donut into coffee

Let M C R be a smooth manifold embedded in Euclidean space. The vector space of vectors
tangent to M at a point p, called the tangent space T, M to M at p, is of the same dimension as M.
Let {x,...,z,} be a smooth coordinate system for Af centered at p; that is, p is the point for which
zj = 0 for all j. We write (a1, ...,a,) for the point with coordinate a; = x;. Then the tangent space
can be written as

TpM = span{vy,...,vn},

where d .
v; = E|,=0(0,...,0,t,0,...,0)

(the only non-zero entry is the j-th). The corresponding picture is that if we were to trace out a curve
given by increasing only coordinate z;, the vector vj € T, M would be the velocity vector of this curve
as it passed p. If you are not comfortable or familiar with the language of tangent spaces, you may just
picture these vectors as the tangent plane to a surface M C R3. We define a vector field on M to be a
choice of vector v(p) € T, M foreachp ¢ M. ‘

Let v : M — RN be a smooth vector field, and let p be an isolated zero of v. Let y = (y1,y2) be
a local set of coordinates centered at p, and choose a small circle S, of radius € > 0 centered at pin
these coordinates. Then the map

Py 1 Se — st
_ v(y)

can be defined, and we define the local index of v at p to be

Ind(v; p) = w(py).

Here, w(py) is the winding number of p, around S* (the net number of times p, wraps around S*
when we go around S, once, with counterclockwise being the positive sense).?

To see what local indices look like, consider Figure 4. If we walk around the small dotted-line
circle centered at the zero of the vector field, we can see the local index by counting how many coun-
terclockwise revolutions the arrows make. In example (a), the image pu(x) starts pointing to the right,

3For the topologically advanced: More generaily, for dim(M) = n > 2, S, is an (n — 1)-sphere, and instead of w(py), we
use the topological degree of the map p,, : S — S™ !, One can prove that for ¢ small enough, the local index is well-defined.
For more details, see chapter 3 of [Gu].
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Figure 1.4: Local indices at zeroes of a vector field

then points upwards, then left, then down, and then right again; p, has traversed S! once in the coun-
terclockwise direction, so the local index is +1. So a “source” has index +1. Looking at (b), we see
that a “sink” also has index +1: starting to the right of the zero, p,, starts pointing left, then down, then
right, then up, and finally left again. It takes something like the situation in (c) to get a negative local
index. Doing the same sort of walk around, p, starts pointing right, then down, then left, then up, and
finally right again; we have traversed S! once in the clockwise direction. Example (d) shows a local
index of +2. If v has finitely many zeroes, then we define the global index (or simply the index)
of v to be the global sum of its local indices:

Ind(v Z Ind(v; )

v(z)=0
The remarkable namesake of this section is the following:

Theorem 4. (The Poincaré-Hopf Index Theorem.) Let v be a smooth vector field on M with finitely
many zeroes. Then the global index of v equals the Euler characteristic of M:

Ind(v) = x(M).

The two-dimensional case was proved by Jules Henri Poincaré (1854-1912) in 1885; Heinz Hopf
(1894-1971) proved the general case in 1927. In particular, the full Poincaré-Hopf Index Theorem
predates Morse theory. A proof using Morse theory, however, is popular; see chapter 12 of [Ma]. For
a proof using the Lefschetz fixed point theorem, see chapter 3 of [Gu]. The immediate corollary of
this theorem is that the global index is the same, regardless of which vector field you choose; this
is analogous to the fact that the alternating sum 3" (—1)* A, did not depend on the choice of Morse
function.

We now use the Poincaré-Hopf Index Theorem to compute again the Euler characteristic of the
surface 4. The vector field we will choose is again culinary: the “hot fudge vector field” vy, ¢ depicted
in Figure 5. Simply stand X4 on end as shown, and pour hot fudge over the surface. In an ideal steady
state situation, all the fudge enters at one point on top, and all the fudge drips off at one point on the
bottom. Then define the value of vy, at a point to be the instantaneous velocity vector of the hot fudge

9



flow at that point. We have a source at the top and a sink at the bottom (neglecting the inflow and
outflow, which are not tangent to the surface), and saddle points (points which look like Figure 4c) at
the top and bottom of each hole (you should try to picture this yourself). We saw earlier that sources
and sinks have index +1 and saddles have index —1, so we conclude

x(Zg) = Ind(vg) = 1+ (29)(-1) + 1 =2 — 2g.

If you compare how the computations went here and in the section on Morse theory, in both cases each
hole contributed two “negative units” (odd dimensional CW cells or negative index zeroes), and the
two ends each contributed one “positive unit” Since the computations are similar in nature, it makes
sense that one is able to prove the Poincaré-Hopf Index Theorem using Morse theory.

We conclude this section with a corollary, which contains a famous and amusingly named result as
a special case.

Corollary 5. A smooth manifold M with x(M) # 0 does not admit a smooth, nowhere vanishing
vector field.

Proof. Let v be a smooth vector field on M. Then by the Poincaré-Hopf Index Theorem, Ind(v)
x(M) # 0. If v were nowhere vanishing, the sum defining Ind(v) would be empty, forcing Ind(v) =
this is impossible.

O=1

Corollary 6. The surface ¥, of genus g admits a nowhere vanishing smooth vector field if and only if
g =1, thatis, if and only if £ is the torus.

Proof. The “only if” direction is immediate from the previous corollary and our earlier computation,
x(E4) = 2 — 2g. Conversely, we can construct a nowhere vanishing vector field on the torus by the
process depicted in Figure 6: first take a nowhere vanishing vector field on S!, and then revolve the
entire construction about an axis away from it. O

The special case g = 0, that is ¢ = S2, is known as the “Hairy Ball Theorem.” Intuitively, it states
that there is always at least one point on the surface of Earth with no wind blowing. Equivalently, if the
Earth had hair, it would necessarily have a bald spot.

1.4 An Example: Real Projective Space
Define real projective space* of dimension . to be the quotient space

RP" = R**! — {0}/ ~
v~w & v=wforsome )€ R — {0}.

Since the equivalence class of a non-zero vector v is the one-dimensional subspace of R™*! spanned
by v (minus the point 0) and every one-dimensional subspace contains a non-zero vector, RP” is just
the set of one-dimensional subspaces of R™*!, topologized.

Note that a particular one-dimensional subspace U C R™*! intersects the unit sphere S C R"*!
in exactly two points, namely the two vectors v, —v of length 1 in U. Thus any even function® on
S™ determines a function on RP"; it is easy to check that if such a function is smooth on S, it is
smooth on RPP™ as well. Let {ag, a1, ...,a,} be an ordered set of distinct, non-zero real numbers; for
simplicity, assume they are in ascending order. Define the function

f:S" >R

f(z) = aozg + alzf +...+ anzfl;

“We borrow greatly from chapter 12 of [Ma] for the first half of this section.
SRecall that a function f : V — X on a vector space V is said to be even if f(v) = f(—v) forallv € V.

10
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using the standard coordinates {z,, ..., zn} on R**1, Since f is even, it determines a function on
RP", which by abuse of notation, we also call f.

We will determine and classify the critical points of £, conclude that it is a Morse function, and
use this to build a CW structure on RIP". Afterwards, we will re-construct this CW structure in a more
elementary fashion. As a corollary of either approach, we will compute x(RP").

Since the properties of f at a point are local in nature, we can continue working with the explicit
embedding S™ C R™*!, At the point z = (x0,...,xy,), the tangent space is

ToS" = {v = (vo,- .., va) C R D" gy = 0},

and the first partial derivatives are given by

of

= 2(111)1
8z,-

However, these are the partial derivatives with respect to the coordinates of the ambient space, R"+1,
We do not need all of them to vanish; we merely need the gradient vector to be orthogonal to all vectors
in the tangent space (for the more advanced: we need the differential to be the zero linear functional).
In other words, we need to show that

n af
E v =0forall v = (vy,...,v,) € T, S™
= O

Since [x| = 1, it is impossible for the partial derivatives to all simultaneously vanish due to z being
zero; instead, we use the relation z - v = 0 for all v € T,S™. The above equation holds, then, if and
only ifz = (zo,...,2,) and (aozy, . . .,anx,) are parallel. But since the q; are all distinct, this occurs
if and only if x = +e;, where e; is the vector of all zeroes, except for a 1 in the i-th place. There are
2(n + 1) such points on S™, but only n + 1 on RP™, since ¢; ~ —e;.

We now check that ep is a nondegenerate critical point and compute its Morse index. A local
coordinate system {yi, ..., y,} is defined by ‘

(y1,---,yn) ER™ H_(i\/l—ny,yl,...,yn) e s™.

In terms of these coordinates, f looks like

n n n
fis-ym) = ag (1 - 2%2) + Zaiyiz =ag+ Z(ai - ao)y}.
i=1 =1 i=1

The matrix of second partial derivatives is just

2(a1 ~— ap)
2((12 bl ag)

2(an — a(])

Since the a; are all distinct, the matrix is invertible, and +ey is a nondegenerate critical point. Also,
the chosen coordinates are evidently of the form the Morse lemma guarantees, so we can read off the
Morse index. Since the points were chosen to be in ascending order, each a; — ag is positive and
MInd(f;+eg) = 0. The same analysis holds for each +e, with the exception that (ag — ax), (a; ~
ar),...,(ar-1 — ax) will all be negative. Thus in the general case, we have

MInd(f; +ex) = k.
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Then the resulting CW structure on RP™ has one cell in each dimension from O through n inclusive,
and
1 mniseven

RP") =
X(RP) {o nis odd.

Finally, we give an elementary, geometric construction of this same CW structure. We begin by
introducing homogeneous coordinates on RPP"; while not coordinates in the usual sense, they are a
convenient way of working explicitly in RP". We will use (n + 1)-tuple notation for the R™*! our
copy of RP™ is obtained from. The homogeneous coordinate for the point p € RP™ is [z, ..., Zn],
where z = (zo,...,Zn) is any non-zero vector in the one-dimensional subspace p of R™+1. In other
words, in homogeneous coordinates,

[0y sTn] = [yos---syn] € ;= Ay; foralld, and X # 0.

Also, a bracketed (n + 1)-tuple [z, . ..,Zn) represents a point of RIP™ if and only if not all its entries
are zero.
Define an open subset Uy C RP™ by

Uo = {[zo, ..., @n) € RP" : zg # 0}.

This is well-defined because nonzero scalar multiplication does not depend upon whether or not zg = 0,
and it is open because it is the inverse image of R — {0} under the even, continuous map on S™ taking
each point to the absolute value of its ey coordinate. The smooth map R™ — Uy given by

(@1, oy @n) = (1,21, .., Tn

T T
[zoy...,zn] — (—1,...,—75>.
Zo Zo

This is well-defined because x¢ # 0, and because scaling all entries on the left does not affect the values
on the right. Thus Uy is diffeomorphic to R™; it is an n-cell. In order to determine what RP™ — Uy is,
note that a bracketed (n + 1)-tuple [zo, . .., z5] is in RP" — Uy if and only if 2o = 0 but not all entries
are zero; equivalently, a point of RP™ — Uy is just a choice of 1, . .., Z,, not all zero. In other words,
this complement is nothing other than a copy of RP"~!. We have found that

has smooth two-sided inverse

RP™ = D" URP™ "},

where we write D¥ for an open k-dimensional cell. Noting that RP? is just a point and inducting
downwards,
RP" =D°uUD'U---UD™

This is the desired CW structure. Intuitively, RP" contains an n-dimensional plane, and a copy of
RP*~! “at infinity”; this RP"~! represents all possible directions in R™, up to identifying opposite
directions. For instance, the projective plane contains the ordinary plane, as well as a circle’s worth
(RP! = S1) of infinities, each point on this circle being a direction in which you can go off to infinity
from the plane.

1.5 Conclusion

To recap: as early as Euler, the curious observation had been made that the quantity F' — E + V cor-
responding to a convex polyhedron always equals 2. This so-called Euler characteristic was computed
for other sorts of shapes, and results about it were proven, but it was not until the machinery of ho-
motopy invariance became available that these results became “trivial” to prove. Indeed, any convex
polyhedron can be “smoothed out” into a sphere, which has Euler characteristic 2.
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In cases where we cannot immediately see what the Euler characteristic is by such a geometric trick,
we can employ more sophisticated methods in our computations. The results of Morse and of Poincaré
and Hopf that we have encountered tell us that given almost any vector field or smooth function on a
manifold, we can compute the Euler characteristic of that manifold; viewed conversely, we can read
these theorems as describing a topological constraint on any vector fields (with finitely many zeroes)
or smooth (Morse) functions which may appear on a given manifold.
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Abstract

The focus of this paper is the famous theorem on primes in arithmetic progressions due to Dirichlet: if
a and m > 0 are relatively prime integers, then there exist infinitely many primes of the form a + km
with k a positive integer. The proof of this theorem in the general case uses analytic techniques, and in
fact some key statements heavily rely on complex analysis. The case a = 1, however, can be handled
by purely algebraic methods as we will show in Section 2.1 following suggestions given in [La]. In
Section 2.2, we will outline the idea of the proof of Dirichlet’s theorem as it is presented in [IR] and
[Kn] for the case m = 4. Finally, in Section 2.3, after a brief discussion of characters of finite abelian
groups following [Se], we will present thre proof of Dirichlet’s theorem (cf. [IR, Kn, Sel).

2.1 There are infinitely many primes p = 1(mod m): algebraic
proof

Let P = {2,3,5,---} be the set of all primes. For relatively prime integers a and m > 0 we let
Pymy = {p € P|p=a(modm)}.

Dirichlet’s Prime Number Theorem states that P,y is always infinite. In this section, we will prove
this for a = 1 by using purely algebraic techniques. It is interesting that the argument can be traced
back to Euclid’s proof of the fact that P is infinite: if P = {p1,...,p,} then for any prime factor p of
p1---pr +1wehavep ¢ {py,...,p,}, a contradiction. We will now do a couple of simple examples
which demonstrate that suitable modifications of Euclid’s method allow one to find infinitely many
primes in certain arithmetic progressions.

Proposition 1. The sets P4 and Py4) are infinite.

Proof. Py(4) : We will use the well-known fact that primes in Py 4) (in other words, primes of the form
4k + 1) can be characterized as those primes > 2 for which the congruence z2 = —1(mod p) has a
solution. Assume that Py 4) contains only finitely many primes, say, p; = 5,p» = 13, ..., pn. Consider
a=4p?---p2 + 1, and let p be a prime factor of a. Then, just as in Euclid’s proof, p ¢ {p1,...,pn}.

T1gor Rapinchuk *07 is a mathematics concentrator living in Kirkland House. He came to Harvard from Charlottesville, VA,
where he graduated from Albemarle High School. His main mathematical interests are in algebraic geometry and algebraic
number theory, with related interests in algebra and complex analysis. Following graduation, Igor plans to pursue graduate
studies in mathematics, and will, in particular, be spending the next academic year in the Math Tripos, Part 111 program at the
University of Cambridge as a Gates Cambridge Scholar.
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On the other hand, pla implies that —1 = (2p; - - - p,)2(mod p), and therefore p € Py 4y (as obviously
P > 2). So, pisa‘“‘new” prime in Py 4y, contradicting our original assumption. Thus Py 4y is infinite.
P4y @ Again, assume that P34y contains only finitely many primes: p; = 3,p; = 7, ..., p,.
Consider b = 4dp; - - - p, + 3. Clearly, bis odd, not divisible by 3, and satisfies b = 3(mod 4). Then all
prime factors of b cannot be belong to Py (4) as otherwise we would have b = 1(mod 4). Since P =
{2}u Py(4) U Py(4), we conclude that b has a prime factor p € P (4. But obviously p ¢ {py,...,p,},
which again yields a contradiction. O

It is important to observe that the above argument for Py 4y already contains the idea that we will
use to prove that Py, is infinite for any m : show that there exists a polynomial f(X) € Z[X ] (for
m = 4 we used f(X) = X2 + 1) such that any prime factor p { m of f(a), where a € Z, belongs to
Py(m), and on the other hand, the values f(a) as a runs through Z have infinitely many prime divisors.
We will show that the latter property holds in fact for any nonconstant integer polynomial (Lemma 2),
while the former property holds for the m-th cyclotomic polynomial ®,,,(X) (see the proof of Theorem
4). This approach to proving that Py (1) is infinite is suggested in Problems 20 and 21 in Ch. VI of
[La]. We also notice that our argument for Py, depends on the fact that an odd prime can get only in
one of the two classes, P (4) or P34y, mod 4, and therefore may not be generalizable for m > 4.

Lemma 2. (Problem 20 in {La)], Ch. VI) Let
f(X) = anX" +an 1 X" 4 + o € Z[X]

be a nonconstant polynomial. Then the nonzero values f(a) with a € Z* are divisible by infinitely
many primes.

Proof. We can assume that ap # 0 as otherwise for any prime p, the value f (pa) is divisible by p for
any a € Z, and of course one can pick an a so that f(pa) # 0. Next, observe that

flaoX) = apg(X) where g(X) = apal ' X"+ +1,

so it is enough to show that the nonzero values g(a) with @ € Z* are divisible by infinitely many
primes. In other words, we can assume that aq = 1. Suppose that the nonzero values f (a) fora € Z
are divisible only by finitely many primes, say, pi,...,pr. Consider F(X) = f(p;---p,X). Then
F(X) is a nonconstant integer polynomial of degree n, hence assumes each value at not more than n
values of the variable. In particular, there exists a € Z* such that F(a) # 0, 1. Then it follows from
our construction that F'(a) is divisible by some p; where i € {1,...,r}. But

F(a) = an(p1---pra)" + -+ +ai(pr - -pra) + 1,
so the fact that p;| F'(a) implies that p;|1. This is a contradiction, proving the lemma. O

Obviously, the above proof of Lemma 2 is based on the same idea as Euclid’s proof. We will now
give another proof of Lemma 2 which gives some additional quantitative information. For a subset
A C Z and a natural number N we let A(N) = {a € A||a| < N}. We will use the following
simple idea: given two subsets A, B C Z, to show that A ¢ B it is enough to find N such that
|A(N)} > [B(N)|. We will apply this idea to the sets

A={f(a)|a€Z* and f(a) # 0}

and, assuming that the numbers in A are divisible only by finitely many primes p;, ..., py,
B ={py"---p}
Let M = max{|ay]|,..., |ag|}. Then forany a € Z \ {0} we have

|f(a)] < lanllal™ + -~ +lagl < M(n + 1)|a|™.
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It follows that if d € N is such that M (n+1)d"™ < N then all the nonzero numbers among f(1),..., f(d)
belong to A(N). Since f assumes each value at not more than n different values of the variable, we get

that y
d-n d 1 N "
> — — — —_ —_— —_— —_
AN)] 2 n n 12 n <<M(n+ 1)) 1) !

because for d one can take

- \Gras) ] ) e

Since (1 + n)'/™ < 2, we finally get that

Nl/n

>
AN 2 5i7m

On the other hand, since p; > 2, we see that pJ* - -- p% < N implies that
a1 + - -ap <logy N,
and in particular, o; < log, N foralli = 1,...,r. It follows that
|B(N)| < (log, N +1)".
Since N'/™/(log, N)" — 0o as N — oo, we find that
|A(N)| > |B(N)]|

for all sufficiently large N. Thus, A ¢ B, which yields another proof of Lemma 2. In fact, we proved
the following.

Proposition 3. Fix a natural number r and pick N so that
Nl/n
2M/nn

If d is defined by (2.1) then the nonzero numbers among f(1), f(2),..., f(d) have at least (r + 1)
distinct prime divisors.

2> (log, N+ 1)".

We are now ready to prove the main result of this section.
Theorem 4. For any m > 0, the set P,y is infinite.
Let ®,,,(X) denote the m-th cyclotomic polynomial (cf. [Col, Sec. 9.1, or [La], Ch. VI, Sec. 3).

Lemma 5. (Problem 21(a) in [La], Ch. V1) Let p be a prime, a and m > O be integers prime to p.
Then p|® ., (a) if and only if the image @ of a in (Z/pZ)* has order (exactly) m.

Proof. First, suppose a has order m in (Z/pZ)*. Then @™ = 1, or equivalently p|(a™ — 1). On the
other hand, for any d such that 0 < d < m, we have a® # 1, and therefore p { (a? — 1). By Proposition
9.1.5 in [Co], we have

xm—1=][]ax) .2)
dlm
and therefore
a™ -1 =[] ®ala). (2.3)
d|

17



Let d be a proper divisor of m. Since ®4(a)|(a? — 1), it follows from the above that p { ®4(a). On the
other hand, p|(a™ — 1), so we conclude from (2.3) that p|®,, (a).

Conversely, suppose p|®,, (a). Then it follows from (2.3) that p|(a™ — 1), i.e. @™ = 1. This means
that the order of @ divides . Suppose the exact order of @ is m’ < m (clearly, m’|m). Then using
a factorization similar to (2.3) in which m is replaced with m’ we see that there exist d |m’ such that
p|®a(a) (of course, d < m'). Then a is a root of both reductions &,,(X) and ®;(X) mod p. It follows
from (2.2) that & is a multiple root of X™ —1. But since p { m, the latter has no multiple roots. A
contradiction, proving that the order of a is exactly m. O

Proof of Theorem 4. First, let us show that for a prime p { m, the conditions p|®,,(a) and p =
1(mod m) are equivalent (Problem 21(b) in [La], Ch. VI). Indeed, if p|®,,(a) then by Lemma 5,
the order of @ is m. Thus, (Z/pZ)* contains an element of order m, and therefore its order p — 1 is
divisible by mn, i.e. p = 1(mod m). Conversely, suppose p = 1(mod m). Since the group (Z/pZ)* is
cyclic of order p — 1, it contains an element @ of order m. Then by Lemma 5, p|®,, (a).

Now, by Lemma 2, the values ®,,(a) with a € Z are divisible by infinitely many primes. As we
have seen, all these primes belong to Py (my, implying that Py, itself is infinite. ]

Since cyclotomic polynomials can be described explicitly (see [La], pg. 280), one can use Propo-
sition 3 to find, for given m and , a natural number d such that among prime divisors of the integers
P (1),...,Pm(d) there are at least r distinct primes = 1(mod m). For example, if m is a prime
then the cyclotomic polynomial ®,,(X) has degree n = m — 1 and the maximum of its coefficients is
M = 1. So, if we choose N so that

N1/ (m-1)

2(m—1)
and define d by (2.1) then the prime divisors # m of the numbers ®,,(1),...,®,(d) yield at least r
distinct primes in P ().

—2> (log, N + 1)

2.2 The idea of the proof of Dirichlet’s Theorem

The idea of Dirichlet’s proof of the Prime Number Theorem can be traced back to Euler’s proof of the
fact that there exist infinitely many primes. Euler considered the generalized harmonic series

1
e (24)
For s € C, we have [n®| = nR®?, so it follows that (2.4) converges whenever Re s > 1. (In fact, it
converges absolutely, implying in particular that the series obtained by any permutation of the terms of
(2.4) converges to the same number, see [Ru], Theorem 3.55.) The sum of (2.4) for s € C such that
Re s > 11is denoted ((s), and the correspondence s — ¢ (s) is called the (Riemann) zeta function.
The key step in Euler’s proof is the following.

Lemma 6. For s € C,Re s > 1, we have
1
= —_— 2.5
) =[] = 2.5)
where P is the set of all primes.

oo d
Proof. We recall that we write a = H an if dlim H an = a. In (2.5), we consider the natural order
—0C
n=1 n=1

onP = {Pl,'--ypdw--},sothat




where the cardinality |P| is either a finite (natural) number or infinity (in fact, the order on P doesn’t
matter). Fix d > 1, and let Ny denote the set of natural numbers whose prime factors belong to

{p1,...,p4} Since
s pre

and the geometric series in the right-hand side is absolutely convergent, we have

< 1
11 = = > — (2.6)

as absolutely convergent series can be multiplied term-by-term (cf. [Ru]. Theorem 3.50). Notice that
the order of summation in the right-hand side of (2.6) doesn’t matter as the series converges absolutely.
Now, we have

< 1
-H1_ = Z ns’

i=1 p; neEN-Ng

Clearly, any number in N — Ny is strictly greater than pg > d, so

1 = 1
Z FS Z nRes ——*Oan—POO,
neN—-Ng n=d+1
and (2.5) follows. O

7 is a finite number, say A.Foranys € R, s > 1,

Now, suppose that P is finite. Then H 1
pEP

Hl—— 1—— A;

peEP pEP

we have

i.e. ¢(s) is bounded above by A as s — 17. Let us show that this is not the case. For any d € N, we

have
41
> =S¢
ns
n=1
d
Taking the limit as s — 1%, we get »_1/n < A for all d. This implies that the harmonic series
n=1

oG

Z 1/n converges, a contradiction. Thus, P is infinite. Using a bit more analysis, we can derive the
n=1
following stronger statement, which is crucial for Dirichlet’s Theorem.

Proposition 7. Fors € C,Res > 1, let
1
As) = Z e
er P

Then \(s) is unbounded as s — 1% in R, and consequently the series Z 1/p diverges.
peEP



Proof. Since ((s) > 0 for s > 1, we derive from (2.5) that

In((s) = Z —In(1-p7%). 2.7
pEP
Using the expansion
.’L‘2 .’L‘3
ln(l+r):x—7+?—~-- for |z| < 1,
we get
_ 1 1 1
—ln(l—ps):p-—s+2p2s+3p3s+~~-. (2.8)
Let ] ]
gp(S) = 'QF 3}735 + -

Clearly, for any s > 1 we have

1 1 1 1 1 1
0< gy(s) < <1+-+——+~--):—-—5—.

It follows that for any d,
L&
DT DR SR
: 1

So, for any s > 1, the series ng(s) converges and its sum g(s) satisfies 0 < g(s) < ¢(2); in
pEP

particular g(s) remains bounded as s — 11. On the other hand, by combining (2.7) and (2.8), we

obtain

In¢(s) = A(s) + g(s).

Since ((s) is unbounded and g(s) is bounded as s — 1¥, we conclude that A(s) is unbounded.
Now, suppose the series Epe p 1/p converges, say to B. Then forany s > 1 and any m € N we

have
m m

Y <Y o <B

o Pi i=1 Di
Taking the limit as . — oo, we get A(s) < B, a contradiction. O
The idea of the proof of Dirichlet’s Theorem is to establish an analog of Proposition 7 for the

function which is defined just like A, but using, instead of all primes, only those primes that occur in a
given arithmetic progression. More precisely, for s € C, Re s > 1, define

Va(m)(s): Z 'is

PEPqy(m)

Then to prove that P, is infinite (which is what Dirichlet’s theorem claims) it is enough to show
that v4 () (s) is unbounded as s — 1*. In the remaining part of this section we will show (following
[IR], Ch. 16, Sec. 2 and [Kn}, Ch. VII, Sec. 1) how this idea can be implemented for m = 4; in other
words, we will show that P; 4y and P34y are infinite.
We obviously have
A(s) =277 + vygy(s) + v3a) (),

so it follows from Proposition 7 that the function
A+(s) = vi(a)(s) +va4)(s)
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is unbounded as s — 1%, and therefore at least one of the functions v (4)(s) or v5(4)(s) has this
property. What we want to show is that borh functions have this property. For this we need to identify
the contributions of 1 (4)(s) and v3(4)(s) to A (s) separately. The sets P;4) and P3(4) canbe separated
by the following function x defined on Z :

0 n=0 (mod 2),
x(n)=<1 n=1 (mod4),
-1 n=3 (mod4).

Consider

A_(s):ziﬁi).

peEP
(Notice that this series absolutely converges for all s € C, Re s > 1.) Clearly,

a8 = SO (8) +A-(5)) and vy (s) = 500 () = A-(9).

So, since A4 (s) is unbounded as s — 17, to prove that both v 4)(s) and v3(4)(s) have this property, it
is enough to show that A_(s) remains bounded.

Proposition 8. The function A_(s) remains bounded as s — 1+,

Proof. Consider the series

= x(n)
L_(S) = Z ns
n=1
This series converges absolutely for all s € C, Re s > 1, but its real advantage over A_(s) is that it is
alternating, and therefore its sum can be easily estimated (notice that A_(s) = —37% +57° — 779 —
117% + .- - is not alternating). We have

L (5)=1-37°+45"°—-7"°4-.-=(1=-3%)+5°=7T"%)+--
from which it follows that L_(s) > (1 —37%) > 2/3 for all s > 1. Similarly, from
Lo(s)=1-(35=5"%)=(77°=97%) —--

we conclude that L_(s) < 1 forall s > 1. To connect L_(s) and A_(s), we observe that the function
% is a multiplicative homomorphism, using which and repeating the proof of Lemma 6 word-for-word,

one proves that
1
L_(s)= —_—
() =11 1-x(p)p~s

peEP

(see Proposition 16(i) for a general statement). Then proceeding as in the proof of Proposition 7, we
see that

InL_(s) = Z ~In(1 - x(p)p™")

pEP
o W  x0?  x)
_ x(») | x(p x(p
~In(1 -x(P)p~*) = o + 3
It follows that

InL_(s) = A_(s) + h(s)

where h(s) is a function that remains bounded as s — 1. We showed above that 2/3 < L_(s) < 1
for all s > 1, so the boundedness of A_(s) as s — 17 follows.
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2.3 The proof of Dirichlet’s Theorem

The function x used in Section 2.2 to separate P, (4) and P34y can be viewed as a character of (Z/47)*
extended by 0 on the numbers (or classes of numbers mod 4) that are not relatively prime to 4. So,
it is not surprising that the proof of Dirichlet’s theorem for arbitrary m uses characters of (Z/mZ)*
extended to Z/mZ by 0 on the classes that are not relatively prime to m. For this reason, we begin with
a brief discussion of characters of finite abelian groups, following [Se], Ch. VI, Sec. 1.

Let G be a finite abelian group. By a character of G we mean a group homomorphism x: G — C*.
All characters of G form a group under the operation (x1x2)(g) = x1(g)x2(g), which will be denoted
G and called the dual of G.

Example 2.3.1. Let G = Z/nZ. Then any x € G is completely determined by its value x(1). Since
1 has order n, we get x(1)" = 1, i.e. x(1) belongs to the group p,, of n-th roots of unity. Conversely,
given any ¢ € uy, the correspondence x: @ — (® is a character of G such that x(1) = ¢. Thus, the
map R

G35 x+— x(1) € pin

is a bijection. Moreover, the equation (x1x2)(I) = x1(I)x2(I) tells us that this map is a group
homomorphism, hence in fact a group isomorphism. Thus, in this example G~ 1in (nOncanonically),
which means that a finite cyclic group is isomorphic to its group of characters. Furthermore, if {, =
cos(2m/n) + isin(27/n) then the corresponding character x(@) = (2 has the property x{a) # 1
whenever @ # 0, so for any nontrivial element of a cyclic group there is a character that does not
vanish on this element.

We will now extend these observations to arbitrary finite abelian groups.

Proposition 9. Let G be a finite abelian group. Then
(i) G~G (noncanonically), in particular;, |G| = |G|;
(ii) forany g € G, g # e, there exists x € G such that x(g) # 1.

Proof. We first observe that if G = G X G, then the correspondence
G 2+ Gy x Gy, x = (XIG1,X[Ga),

is an isomorphism of groups. Indeed, it follows from the definition of multiplication on the character
group that 6 is a group homomorphism. Since G and G, generate G, 6 is injective. Finally, given
(x1,Xx2) € G1 x Gy, the map x: G — C* defined by x(g) = x1(91)x2(g2) if g = (g1,92) is a
character of G which restricts to x; and x2 on G; and G respectively, proving that 6 is surjective.

By the structure theorem for finite abelian groups (see [Ar], Theorem 12.6.4), G ~ Gy X+ x Gy,
where G; are cyclic groups. Then it follows by induction from the above remark that the correspon-
dence R - .

G—Gix--xGyp, x— (x|G1,-..,xIGr),

is a group isomorphism. According to the example, a ~ G;foralli = 1,...,r yielding (i). If now
g € G is a nontrivial element then g = (g1, ..., g,) and there exists an 4 such that g; is nontrivial. As
we observed in the example, there exists x; € é\l such that x;(g;) # 1. Then the character y ¢ G
corresponding under ¢ to the r-tuple (xo1, ..., Xi,-- -, Xor), Where Xoj is the trivial character of G;,
has the property x(g) # 1. O

Corollary 10. Let H be a subgroup of G, and let G -2 H be the homomorphism given by restriction.
Then p is surjective.
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Proof. Assume the contrary. Since |G| = |G| and |H| = |H|, this means that | ker p| > |G : H]. But
any x € ker p, having trivial restriction to H, induces a character of x € G//T-I defined by x(gH) =
x(g). Clearly, the map ker p — G//T-I, X — X, is injective, so we obtain |G/H| = |5/7—I| > [G: Hl,
a contradiction. 0

For a fixed g € G, the map 4,: G — C, d4(x) = x(g), is a character of G. Moreover, the map

e:G oG, g — &g is a group homomorphism.
Corollary 11. ¢ is a group isomorphism. Thus, G is (canonically) isomorphic to its second dual G.

Indeed, it follows from (ii) that  is injective. On the other hand, by (i), |G| = |6'| = |G|, whence
€ is an isomorphism.

The following proposition and especially its corollaries play a crucial role in the proof of Dirichlet’s
theorem.

Proposition 12. (i) Let x € G. Then

G is trivial,
Yox@)= {L o

oy otherwise.

(ii) Let £ € G. Then
G| z=e,
me:{g' )
xea '

Proof. (i): The first assertion is clear. To prove the second, pick ¥ € G so that x(y) # 1. Then

Yo x@) =Y x(zy) = (Z x(r)> x(v)

z€G r€G TEG

It follows that

(x(w) - 1) Y_ x() =0,

reG

and therefore Z x{(z) =0.

reG
(ii): In the notations introduced prior to Corollary 11,

o x@ =Y 8

Xéa xea

Since 6, = 1 & x = 1, our claim follows from part (i) applied to G. O

Corollary 13. Forx,y € G we have

)" Iv(y) = IGl ==y,
> x@)'x() {0 .

xeG
Indeed, Z x() x(y) = Z x(z~1%), so we can apply (ii).
xea xea

Now, fix m > 1 and let G, = (Z/mZ)*; clearly, |G| = p(m). Given x € 5:1, we extend it to a
function on all of Z/mZ by defining its value to be 0 on classes mod m that are not relatively prime to
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m. Composing this function with the canonical homomorphism Z — Z/mZ we obtain a function on Z
that will be denoted by the same letter x. Notice that x (ab) = x(a)x(b) forall a,b € Z. A special role
in the proof is played by (the function on Z obtained from) the trivial character xo Which in this context
is called the principal character. Thus, xo(a) = 1 if a is relatively prime to m, and 0 otherwise. For

each xy € 5;, we define
x(p
Mox) = 5 X8,

peEP p

Since |x(a)| < 1 for all a € Z, the series in the right-hand side absolutely converges for all s € C,
Res > 1.

Corollary 14. In the notations introduced in Section 2.2, Jor any integer a prime to m we have

1 _
Va(m)(s) = <p(m) Z\ X(a) l’\('SvX)
XEGm

Joranys e C,Res > 1.

Indeed, using the definition of A(s, x) we obtain

¥ xe e = T @ YA

x€Gm x€Gn, il
N -1
_ Z 2 ean x(@ 7 x(p)
pEP P
m
- Z (p(s ) = <p(m) 'Va(m)(s)
PEPy(m) p
as
. _Jo(m) p=a (modm),
Z\ x(@)™ x(p) = {0 T # otherwise.
X€Gm

according to Corollary 13.
The following theorem comprises the most technically complicated part of the proof of Dirichlet’s
theorem.

Theorem 15. (i) The function A(s,xo) is unbounded as s — 1.
(ii) For x # Xo, the function (s, x) remains bounded as s — 17 .

Theorem 15 in conjunction with Corollary 14 immediately implies Dirichlet’s theorem. Indeed,
Theorem 15 implies that the function

1 _
Va(my(s) = o) > x(@)7'A(s,x)
x€Gon
is unbounded as s — 1%. Since )
Va(m) (S) = Z E?
PE Py (i)

this implies that the set P, is infinite.
The remaining part of this section is devoted to proving Theorem 15. Assertion (i) is easy: we
obviously have

M) = 3+ A o),

plm
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so the required fact immediately follows from Proposition 7. On the contrary, assertion (ii) is very
difficult. First, as we have already seen in the proof of Proposition 8, it may be easier to work instead
of A(s, x) with a similar expression in which the summation runs over all natural numbers instead of

just primes:
Lo x(n)
L(S7X) - nz: ns .

This series absolutely converges for s € C, Re s > 1 and defines a function in this domain which
is called the Dirichlet L-function corresponding to the character x. The following proposition relates
L(s, x) and A(s, x).

Proposition 16. For any character x mod m and any s € C, Re s > 1, we have the following:

(i) L(s,x) = Hl ey

pEP
(ii)In L(s,x) = /\(s,x) + g(s,x) where g(s, x) is bounded as s — 1%.

Proof. (i): We will imitate the proof of Lemma 6. Again, let Ny denote the set of natural numbers

whose prime factors are among the first d primes p1, . .., pq. For a fixed prime p we have
2
1 .
_ :Hx(f) +(X(f)> b
1-x(p)p P p
x(p) , x(®®)
=1+ p_s + —pas—‘ +
It follows that
d d
1 2
11 -s:H(1+X(€’)+X(2’)+ )
o 1= xapr® p; P}
_ Z x(n)
n€ENy n?
because N o
X)) x(pa)™ x(pll- ‘P3")
Py’ pq* P - pg*
Now,

d
x(n
il——_-Il 1- X p’ neg:Nd

Since any n € N — Ny is > d, we have

s xmf s
X < 0 as d — oo,
ns nRes
n€EN—-Ng n=d+1

proving (i).
(ii): Here the argument is similar to the proof of Proposition 7. From (i) we derive that

InL(s,x) = Z —In(1 — x(p)p~°%)

pEP
On the other hand,
—sy_ x(0)  x(®?  xp)? x(p)
—In(1 — x(p)p™*) = e T W T +"':F+9P(3’X)



where

_x? | xp)?
gp(saX) T 2p25 + 3p33 +
Then
< 1 1 < 1
19p(s, )| < 2—pgg+3pﬁ+'“ S om

as we have seen in the proof of Proposition 7. Then for any d,

d oc
Zlgplsx SZT Z*l:j:
el 2ot

This means that for any s > 1, the series Z gp(8,x) absolutely converges, and its sum g(s, x)
pEP

satisfies |g(s, x)| < ¢(2), hence remains bounded as s — 1%. Since In L(s, x) = A(s, x) + 9(s, x),

(ii) is proven. O

It follows from Proposition 16(ii) that to complete the proof of Theorem 15 one needs to show that
if x # Xxo, L(s, x) approaches some nonzero number as s — 1%. This part of the argument heavily
relies on complex analysis. Let

IT 6.

XEG‘H'L

Propesition 17. (i) L(s, xo) extends meromorphically to the domain D = {s € C|Re s > 0} with
the only pole at s = 1, and this pole is simple.

(if) For x # xo, L(s, x) extends holomorphically to D.

(iii) (m(s) extends meromorphically to D with a pole ar s = 1.

Assume for now Proposition 17. Then for x # xo,

lim L(s,x) = L(1,%),
s—1+

which is a finite number. Suppose L(1, x) = 0 for at least one character x # xo. Then in the product
L(s,x0)L(s, x) the zero of L(s,x) would annihilate the pole of L(s,xo) at s = 1, implying that
the product is actually holomorphic at s = 1. Since the L-functions for all other characters are also
holomorphic at s = 1, we would get that (,,,(s) is holomorphic at s = 1, which contradicts Proposition
17(iii).
Analyticity in parts (i) and (ii) is derived from the following general statement.

Lemma 18. Let U be an open set of C and let {f,} be a sequence of holomorphic functions on U
which converges uniformly on every compact subset of U to a function f. Then f is holomorphic in U.

Proof. See [Se], pg. 64-65. O

Proof of Proposition 17(i). First, we will show ((s) extends to a meromorphic function on D with a
simple pole at s = 1. For s > 1 we have

1 o0 o0 n+1
= t™5dt = t~%dt.
— - >/

n=1

Hence we can write

1 20 1 n+1 1 s n+1
_ - - —s - -5 _ 1—§ .
c(s)_s_1+nz=:l<ns /n t dt) 8—1+,12=:1/n (n=% —t™%)dt
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Set now

n+1 x
62(5) :/ (n=* —t%)dt and 6(s) = 3 duls).
n n=1

Our goal is to show that ¢(s) is defined and analytic in D; then 1/(s — 1) + ¢(s) will be the required
meromorphic extension of ¢(s). Since each of the functions ¢,,(s) is analytic in D, the analyticity of
¢ will follow from Lemma 18 if we can show that the series > ¢, (s) converges uniformly on every
compact subset of D. But any compact subset of D is contained in

Koo = {3€C|Re-$20', |S| Sc}
for some ¢, o > 0. Let ¥, 5(t) = n~° — t~5. Then for any ¢y € [n,n + 1] we have

|wn,s(t0)| = |d)n,s(t()) - L/)n,s(n)|

<  max W] to-n
= telnnt] Iwn,s( )l | 0 |
< ma 5 ‘ |S|
X |—|=—7.
= tefnntl] fs+1 nRe s+l
So, for s € K, ., we have
|s] c

|¢n(3)| < max 1 W"n,s(t)' <

IO i ER G A
te(n,n+ nRestl — potl

Since the series ) —r converges, the series 3, ¢, (s) uniformly converges on K, . by the Weierstrass
M -test (cf. [Ru], Theorem 7.10).

Now, it remains to relate (s) and L(s, xo). Suppose m = ¢ ---¢2+. Let N’ be the set of all
natural numbers of the form qf ... g% and let N be the set of all natural numbers that are relatively
prime to m. Then any n € N can be uniquely written in the form n = n'n” withn’ € N, n” € N”_ It

follows that
w-gi(z2) (54

neN nenN’ nenN
But !
Z—_:L(S’XO)
neNllns
and .
1 1 1 1 1 1
—_ = 1+._+_+...>...<1+._+_+...>: —.
Zns ( @ o @ e Hl—q,-s

neN’ i=1

So, L(s,x0) = ¢(s)F(s), where F(s) = H(l — ¢;*). Since F(s) is holomorphic and has no zeroes

i=1
in D, we obtain our claim. O

Proof of Proposition 17(ii). We will prove analyticity of L(s, x) in D for x # xo by showing that the

series
xX

x(n)

ns
n=1

converges uniformly on compact subsets of D. The proof imitates the proof of Abel’s and Dirichlet’s
test for convergence of series of the form 3~ a,b,, (cf. [Ru], Theorem 3.41). Leta, = x(n), b, = n~".
To apply the Cauchy criterion, we need to show that | ZTIL M @nbn| becomes arbitrarily small uniformly
on K, . for M < N if M is large enough. Let A, = }"}_, a,. The crucial thing is that the assumption
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X # Xo implies that |A,| < C for some constant C independent of n (which, of course, is false for
X = xo'). Indeed, for any a € Z we have x(a) = x(a + m), and besides it follows from Proposition

12(i) that

Thus, if n = dm + r where 0 < © < m then

n dm+r r
A=) x(k) = 3 x(k) =Y x(k) = 4,
k=1 k=dm+1 k=1
where by convention A = 0. So, C' = max{|A;|,...,|Am_1]} will work.

Substituting a,, = A, — A,,_1, we get

N N-1

Y anby = D" Anlbn = bny1) + Anby — Arr—1bas.

n=M n=M
We have seen in the proof of part (i) that

ls|

|Tl_s - (Tl + 1)—s| S ;m.

So it follows from (2.9) that

N N-1
n¥n nRes+l A{Res NRes”
n=A
Thus, if s € K, . then
N N-1
1 2C

Zanbn SCCZ ot +~W.
n=M n=M

(2.9)

Since the series ) 4 converges, we see that | Zn M Gnbr| becomes arbitrarily small uniformly on

K, if M is large enough, completing the proof.

Proof of Proposition 17(iii). We only need to show that {,,(s) cannot be holomorphic at s = 1.

O

Lemma 19. For an integer a prime to m, let f(a) denote the order of @ in G,,, and let gla) =

o(m)/f(a). If T is a variable then

I] 0 -x@T) = (@ - 7@y

e

Proof. Let H be the cyclic subgroup of G, generated by a; |H| = f(a). Then the set {x(a) | x € ﬁ}

is precisely the set of all f(a)-th roots of unity. It follows that

[T (X = x(@) = X/@ -1,

xeﬁ

Substituting X = T~! and multiplying by 7/, we get

[[a-x@n) =1-1/@®.

xeH
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Now, the homomorphism of restriction 5‘; S His surjective (Corollary 11) and its kernel has order
g(a). It follows that

g(a)

H (1-x(a)T) = H (1= x(a)T) =(1- Tf(a))g(a).

XE€EGm x€H

Using Lemma 19, we can transform the expression for (,,(s) :

1 1
[ zex0=11| I /=G| I aromm @10

x€Gnm PEP \ yeGn (pm)=1

Since
1 1 1

A=pFos L s P arms

it follows from (2.10) that ¢, (s) can be written in the form

e
- n
Cm(s) = s (2.11)
n=1
(a Dirichlet series) with ¢, > 0, and the series converges for |s| > 1. Assume now that (,,(s) is
holomorphic at s = 1. Then (,,,(s) is holomorphic everywhere in D. By applying [Se], Prop. 7, Ch.
V1, we conclude that the series in (2.11) converges everywhere in I. To see that this is false, we observe

that

1
O —f(p)s =2f(p)s 4 ... \9(p)
(1 _p—f(p)S)g(p) (+p tp + )

1
—p(m)s -2p(m)s | ., —
>1+4p +p + =
So,
o0
Cn - —p(m)s _
Z ns 2 H 1—p- <p(m)s - Z n L(Sﬂ(m)S,Xo)-
n=1 (p,m)=1 (n,m)=1
But we already know that L{yp(m)s, xo) diverges for s = ¢(m)~', so 3 <& cannot converge for the
same value of s. A contradiction. O

This concludes the proof of Dirichlet’s theorem.
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Abstract

This project is based on the study of two kinds of representation theory: quiver representation theory
and Lie algebra representation theory. By looking at some simple examples, we’ll show how the two
are connected. Indeed, we’ll identify the isomophism classes of simple and indecomposable represen-
tations of a particular quiver with relation with the equivalence classes of simple and indecomposable
representations of s (k). Throughout this paper, k will indicate an algebraically closed field of char-
acteristic 0.5

3.1 Quivers

3.1.1 Definitions

A quiver is directed graph Q = (Qy, Q1) where Q is the set of vertices (which is assumed to be
finite) and Q; the set of arrows, with maps h,t : @1 — Qo which assign to each arrow its head and
tail, respectively. Every vertex ¢ € Qo has an associated edge e; such that h(e;) = t(e;) = 1.

A path is a sequence of arrows p = ajaz - - - an such that h(ags1) = tlax) fork =1,...,n ~ 1.
The head of the path is 2(a, ), and the tail of the path is t(a,,). Each e; (defined above) is a trivial path
which starts and ends at the vertex ;.

An oriented cycle is a path p such that h(p) = ¢(p), and h(a;) # t(a;) for any other ¢ # j + 1.

It is easy to see the following property:

Proposition 1. A quiver with an oriented cycle has an infinite set of paths.
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Given a quiver Q, the path algebra KQ is the k-vector space generated by all paths in @ with
multiplication rule:

0 otherwise.

B {pq if h(g) = t(p)
p*q=

Given a point i € @, we have that e; is the null path beginning and ending at that point, so
a * e; = a whenever t(a) = i and e; * b = b whenever h(b) = i. Note that the path algebra has a unit
given by Z €;.
i€EQo
Example 3.1.1. The Jordan quiver J has one vertex Jo = {1} and one nontrivial arrow .J; = {ey,a},
such that t(a) = h(a) = 1.
Its path algebra has basis {e;,a,a?, ...} and is thus infinite-dimensional.

Example 3.1.2. The 2-Kronecker quiver K

a
ere 12
b

has finite-dimensional path algebra with basis {e1, €2, a, b}.
However, the cyclic 2-Kronecker quiver C, presented by

a
ere 12
b

has an oriented cycle, and its path algebra is infinite-dimensional with basis
{e1,€2,a,b,ba,ab,aba, bab, ..., (ba)*, (ab)*, a(ba)*, b(ab), .. }.
Example 3.1.3. The 3-Kronecker quiver K3 presented by

a
e ® b e e

c

has finite-dimensional path algebra with basis {e1, 2, a, b, c}.

3.1.2 Quivers with relations

We can impose further relations on the composition of arrows. This is equivalent to quotienting the
path algebra by the apropriate ideal.

k

Example 3.1.4. For the Jordan quiver defined above, we can impose the relation a® = e; for some

k € N. The resulting path algebra has basis {e;, a,a?,...,a*"'}.

Example 3.1.5. For the quiver Cy defined above, we can impose the relation ab = ez, to obtain a
quiver with path algebra basis given by {e;, e2,a, b, ba}.

3.2 Quiver Representations

3.2.1 Definitions

Given a quiver Q, a quiver representation of Q is a collection {V;|i € Qq} of finite dimensional
k-vector spaces together with a collection {¢q : Viq) — Vi(a)la € Q1} of K-linear maps such that

Gu®b = dab.

From now on, we will denote a representation by R = ({V;}, {#a})-
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Example 3.2.1. The representations ({V'}, {#}) of the Jordan quiver are given by all n x n matrices
Ag, wheren = dim V.

Suppose R = ({Vi},{¢a}) and R’ = ({W;},{%,}) are representations of Q. Then R'is a
subrepresentation of R if

e for every i € Qg, W; is a subspace of V; and
e forevery a € Qy, the restriction of ¢, : Vita) = Via) to Wy(q) is equal to 1, : Wia) = Whia)-

The zero representation of Q is given by ({V;}, {¢,}) such that V; = 0 for all i € Qo and ¢, is
the zero map for all @ € ;. A non-zero representation R is called simple representation if the only
subrepresentations of R are the zero representation and R itself.

IfR = ({Vi},{e}) and S = ({W;}, {t),}) are representations of ( then we can define the direct
sum representation R & S = ({U;}, {p,}) by taking:

o U, =V, @ W, forevery i € Q, and

. . 0
® pa i Vi(a) © W) = Vi(a) ® Whya), given by the matrix < %a P, )
a

If R and S are two representations of Q, then a representation morphism ® : R — S is a
collection of K-linear maps {¢; : V; — W;}i € Qo} such that the diagram

¢(‘
Vi) Vi(a)

Pt(a) Ph(a)

Wiw) —5 Wa
commutes for all a € Qq. If p; is invertible for every i € Qy, then the morphism & is called an
isomorphism and R and S are called isomorphic representations.

A representation R of a quiver Q is called decomposable if R ~ S @ 7 where S and 7 are
nonzero subrepresentations of Q. A nonzero representation is called indecomposable if it cannot be
written as such a direct sum. For any quiver Q, the simple representations of ¢ form a subclass of its
indecomposable representations. ‘

3.2.2 Isomorphism Classes of Representations

The study of quiver representations is significantly simplified if we consider isomorphism classes of
quiver representations rather than representations themselves. To find a representative element of each
isomorphism class, we apply representation isomorphisms to change the basis of the vector space at
each vertex in order to simplify the matrices for the maps at each arrow. For representations over C
with equidimensional vector spaces at each vertex, this process is the same as that of the Jordan normal
form.

Example 3.2.2. For the Jordan quiver with one vertex and one arrow, every isomorphism class of
representations has a representative element of the form R = ({Vi},{J;}) where J; is a matrix in
Jordan normal form and V; is a vector space with the associated basis.

This is a direct consequence of the theorem that every square matrix M = P~ JP, where J is in
Jordan form and P is an invertible matrix corresponding to the change of basis required to isolate the
eigenspaces of the operator; see [Ha].
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If we restrict ourselves to representations with invertible maps at each arrow, we may simultane-
ously describe the isomorphism classes of representations of quivers which differ from each other only
in the orientation of their arrows. Note that the invertibility condition implies that the representation
must have equidimensional vector spaces at all vertices. The isomorphism classes of these representa-
tions can often be described neatly, by analogy to the case of the Jordan quiver.

Example 3.2.3. Given any representation R of the cyclic 2-Kronecker quiver C of the form
R = ({V17 V2}7 {A7 B})7

where A and B are both invertible, we can find an isomorphic representation of the form:

A Id
Vie oV ~ Ve o V)
B J

with J in Jordan form. To find this isomorphic representation, let 3, and Bs be bases for V; and V;,
respectively. Take Pp to be the change-of-basis matrix taking B, to AB;. This is possible because
invertibility implies equidimensionality. Then the representation isomorphism &, = (Id, ) yields
the isomorphic representation

R' = ({Vll> V2I}7 {Idv BA})

We can find an invertible matrix P, such that BA = P, L JP;, where J is a Jordan-form matrix.
Applying the representation isomorphism &, = (P, P) yields the desired isomorphic representation.

Since we are considering only representations ({V;}, {¢,}) with ¢, invertible for all a € Q1,
quivers that differ only in the direction of their arrows (such as K, and C3) have the same sets of
representations. However, these quivers still have different representation theories (for example, dif-
ferent classes of simple representations), because the definition of a subrepresentation depends on the
direction of arrows.

Example 3.2.4. The case of the 3-Kronecker quiver K3 is more complicated than that of the 2-
Kronecker, because we may not be able to simultaneously put the maps on the second and third arrows
in Jordan normal form. However, in the case dim(V}) = dim(V,) = 2, we will always be able to
conjugate bases and obtain an isomorphic representation of the form:

dba Id
Vie o oV, Ve J oV,

e i 0
ik

3.2.3 Simple Representations

1%

Definition 2. An i-th canonical representation R; for the quiver Q = (Qo, Q) is a representation
of the form
R = ({‘/J = 6,']'1(}, {¢a =0foralla € Q]})

where ;; = 1 when ¢ = j, 8;; = 0 when ¢ # j.

Proposition 3. Let Q be a quiver with no oriented cycles. A representation R of Q is simple if and
only if it is canonical.

Proof. (<) A canonical representation R must be simple, because its only proper subrepresentation is
the zero representation.
(=) We will show that every non-canonical representation has a canonical subrepresentation.
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Lemmad. If Q = (Qo, Q1) is a quiver with no oriented cycles, then there is some vertex i € Q such
that i # t(a) for all arrows a € Qy. Such an arrow is called a sink.

Proof. Suppose for every v; € Qq, v; = t(a) for some a € Q. Choose some v; € Qg and form a path
as follows: Choose a,, such that t(a,,) = v,. Write vn1 = h(ay), and repeat. As Qo is a finite set,
eventually we will get v, 1 = v; for some i < n. Thenp = a; - - - a,, is an oriented cycle in (). But by
assumption, € has no oriented cycles, so some vertex in ) must be a sink. O

So let @ be a quiver with no oriented cycle, let z; € Qo be a vertex such that t(a) # x, forall
a € Q1. Given an arbitrary representation R = (V;, p, ), if Ve, # {0}, then write z,, = z; and proceed
to the construction of S below.

It Vo, = {0}, define Q" = (Q) = Qo\{21},Q} = Q1\{a € Q1|h(a) # 21}). As Q contained no
oriented cycles, and Qy C Qo, Q) C Q1, Q’ contains no oriented cycle, so we may apply the lemma.

So we may let x3 € Q) be a vertex such that t(a) # z; forall a € Q). Define the representation
R’ of Q' by restricting the representation R, and repeat the process described above.

If R is a non-trivial representation of Q, we will eventually find z,, € Qg such that V. # {0} but
Vh(ay = {0} forall @ € Q; such that t(a) = z.,.

Construct a representation S of () by taking

S = ({Wi = 6n:k}, {¢s = 0foralla € Q;}).

Then S is a proper canonical subrepresentation of R. To see this, observe that W; C V; for all
& € Qo and define the inclusion morphism from S into R by P = {P; : W; «— Vi|i € Qo}.

To check that all maps commute, first note that for @ € Q1 such that t(a) # z, Wiy = {0}. So
Ya : Wia) = Who) and Pyqy : Wye) — Vi(a) must both be the zero map. Hence, for all a € Q,
such that t(a) # z we have: Pyq) 01 = (g © Pi(a) = 0 so the morphism commutes.

Now, for all a such that ¢(a) = z, we know that V) = Whiay = {0}. So ¢4 : Vya) = Vha)
Ya : Wia) = Whieyand Py : Wh(a) = Vh(a) must all be the zero map. So for all @ € Q such that
t(a) = z, we have Ph(a) ©¥a = @a © Pyqy = 0 and the morphism commutes.

Therefore, S is a subrepresentation of R of the desired form. O

3.2.4 Indecomposable Representations

Here we will work with the examples we have given above. The invertibility of maps and the dimension
vectors will play an important role in giving all the indecomposable representations for some given
quiver.

Example 3.2.5. A representation R of the Jordan quiver .J is indecomposable if it is isomorphic to a
representation with matrix for ¢, in Jordan form with a single eigenblock, as such a matrix cannot be
rewritten as a direct sum of two smaller matrices.

Example 3.2.6. For the oriented 2-Kronecker quiver C, in Example 3.1.2, we have the following
classification:

Proposition 5. A representation R = ({V; = C™, Vo = C"}, {4, ¢s}) of Cy is indecomposable if
and only if one of the following holds:

e R =R = ({W,Vo},{ld, J\}) where Jy is a matrix in Jordan normal form with only one
eigenblock.

® (0 ¢g)* =0 forsome k € Zt and dimker ¢y 0 ¢, = 1.

Proof. Without loss of generality, m > n.
We describe the possible cases, and prove decomposability or indecomposability for each case.
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1. If the composite map ¢, 0 @, : Vi — Vi is invertible, then we must have m = n, and ¢, ¢ both
invertible. Thus, by changing bases, we can find an isomorphic representation with ¢, = I, ¢},
represented by a matrix in Jordan form.

Then, as shown above, R is indecomposable if and only if the matrix for ¢; has only one Jordan

block.

2. If the composite map ¢, o @, : V1 — V] is not invertible, we have two cases:

(@) @b o ¢ is nilpotent, i.e. (¢p © ¢ )* = O for some k € Z*+

i.

Suppose dim ker ¢, o ¢, = 1. Then take = € ker ¢y © ¢,. Then any y in the kernel
of ¢ 0 ¢, must be a scalar multiple of z. Suppose R is not indecomposable, so that
R =R’ & R” where

R' = ({Wh W2}7{AlW1vB|W2}) ’ R" = ({Ul,UQ}’{A‘UUBIUz})

are both non-trivial. Without loss of generality, x € W;.

First suppose y € Uy,y # 0. Then by definition of decomposability, (¢ © ¢a)* € Uy
forall i € Z,. But (¢ o ¢5)F = 0, so pick the least j € Z* such that (¢p 0 ¢)7 =
Then (¢ 0¢,)? " € ker ¢ 0 ¢, so for the y chosen above, (dp0 ¢, ) "1y = Az € Wi,
But by assumption, y € U;. Thus, U; = {0} so Vj = W,.

Now suppose y € U,, y # 0. Then, by a dimension counting argument, either y =
¢qx for some x € V| or ¢py = x for some nonzero x € Vi. In either case, y € Ws
by the invariance of subrepresentations. But by assumption, y € Us, so Uy = {0} so
Vo = Wy, Therefore, R” in the direct sum is the trivial subrepresentation, so R is
indecomposable.

ii. Suppose dimker ¢, 0 ¢, > 1. Write ker ¢ 0 ¢g = Wy & Uy, both of which are

non-zero. For z € Vi, write j, € Z* is the minimal integer such that (BA)’> = 0,
and define:

W, = {z € Vi|(dp 0 da)jz — Lz € Wy}, U = {x € V1|(¢b 0 ¢0)7" " € Up)}

These two sets define a decomposition of R, so R is decomposable.

(b) ¢» © &, is not nilpotent; i.e. (g_b,, 0 ¢g)¥ # 0 for all k € Z*. Then there is some integer
j such that V; = ker(¢p o @) & Wy and (¢ © ¢ ) |w, is invertible. These sets define a
decomposition of R, so R is decomposable. O

Corollary 6. The vector spaces V1, V, of an indecomposable representation of Cy can only have di-
mensions dim V], = m =n =dimV, ordim V), = m, where m =+ 1 = n = dim Va.

Proof. In the first case, V; and V, must be equidimensional. In the second case, dim ker ¢ 0 ¢4 =

1
implies |dim V] — dim V| < 1. O

3.3 Lie Algebras and Their Representations

Definition 7. A Lie Algebra g is a (non-associative) algebra with the multiplication rule given by a
bilinear map [ , | which satisfies

o [z,z] =0forallz € g,

o [z, [y, z]] + [y, [z, z]] + {2, [z,y]] = Oforall x,y,2 € g.
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These two properties imply that the [ , | operation is anti-symmetric, i.e. [z,y] = —[y,z| for all
I,y €g.

We can construct a Lie algebra from any associative algebra by defining the bracket operation as
the commutator [, b] = ab — ba.

3.3.1 Representations of sl,(k)

The simple linear algebra sl; (k)= {A € M,(k)| tr A = 0)} of traceless 2 x 2 matrices is a Lie Algebra
with bracket operation defined by the commutator [A, B] = AB — BA and basis:

= (50) = (38)n=(5 ).

We will describe the isomorphism classes of certain subclasses of the simple and indecomposable
representations of sl (k) and show that these correspond to simple and indecomposable representations
of the 2-Kroneker quiver with an oriented cycle under the relation ab = 0, as described in Example
3.15.

We will restrict ourselves to the category O(sl,) of representations of sl, (k) such that

o V= @ Vi, where Vi, = {v € V|hv = kv} is the eigenspace with eigenvalue k for the action
of h o‘ixelz/,

o Vi, =0fork >0,

e Each V} is finite dimensional.

Given v € Vj, using the bracket properties, calculation gives:

e h(v) = kv,

* h(f(v)) = (k- 2)f(v),

o hie(v)) = (k + 2)e(v).

In other words, the action of f takes the eigenspace V; with eigenvalue k to Vi_, with eigenvalue
k — 2, and the action of e takes V}, to Vieto-
By the given properties, we have that each representation has a maximal eigenvalue m € Z and:

k ifk=m—2iforieZ,,
Vi = .
0 otherwise.

Thus, if we take vo € Vin, the set B={v;|i € Z*}, where v; = f%(v), defines a basis for

Vim) = @ Vi

k<m

From the equations above, we can calculate that e(v;) = i(m — i 4+ 1)v;y;.
Now, we will describe a chain of examples of such representations; for this we assume that k = C.

Example 3.3.1. (The Verma Module)
Let M (m) be the sl;-module with underlying vector space

M(m) = Pkv;

i>0

36



and the action given by
h(vg) = mug, v; = f'{vg), e(vy) = i(m — i + 1)vipa.

It is easy to check that this is in fact a representation and we have a diagramatic picture as in Figure 3.1.
We have defined m as the greatest eigenvalue of M (m). If m is negative, then the map e does not
annihilate any of the other eigenspaces, and we have an infinite-dimensional simple representation.
If the greatest eigenvalue, m, is nonnegative, the action of e will annihilate the eigenspace M (m) _
since e(vm41) = 0. In this case, the representation will not be simple; in fact, the k-subspace

@ k’U]'

j2m+1

m-—2

is a subrepresentation isomorphic to M (—m — 2). It will, however, be indecomposable, because the

subspace
P Mim),

—-m<is<m

is not invariant under the action of f.
Now, for m > 0 m € Z, taking the quotient representation

V(m) = M(m)/M(-m —2)

gives a second example of simple representation, the only one with nonnegative integer maximal eigen-
value, V' (m). Its structure is shown in Figure 3.2(a).
These representations can be related by the following non-split short exact sequence:

0—-V(-m-2) > M(m)—V(m)—0.

Example 3.3.2. (P(—m — 2) and M*(m))

Let M (m) be the Verma module as defined above, and define another linearly independent eigen-
vector wq with eigenvalue —m — 2 such that e(wg) = vp,. From wg, we can derive another set {w; }ien
of eigenvectors by the rule w; = f*(wy) for each eigenvalue A = —m — 2(i + 1). Take the direct sum
of the Verma Module with the eigenspaces spanned by these wjs together with the action of e given by
e(w;) =1(—-m —1i—Nwi_1 + vt

Now we can consider the k-vector space

M(m) & @ kw;

320

with action given by h(wg) = (—m — 2)wg, w; = fH(wo) and e(w;) = i(—m — i — 1)w;_1 + Uy It
is easy to verify that these formulas turn the vector space @ kv; @ @ kw; into a module belonging
320 i>0

to category O(sly). We denote this module by P(—m — 2) and it has the diagram shown in Figure
3.2(b).

Notice that the k-subspace @ kv; is a subrepresentation isomorphic to M(—m - 2). Then,

j2m+1

taking the quotient of these two representations, we define M*(m) = P(—m — 2)/M(—m — 2). This
gives another non-split short exact sequence:

0— M(-m—2)— P(-m—-2)— M"(m) — 0.
Furthermore, M *(m) has the diagram shown in Figure 3.2(c).
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kvo

kv,

Kvm 41

Figure 3.1: The Verma module M (m).

Also, we can see that M*(m) has V(m) as a subrepresentation which gives directly the next non-
split short exact sequence:

0—-V(m)—- M*(m) > M(-m-2) 0.
Finally, as P(—m — 2) has M(m) as a subrepresentation, we get another short exact sequence:
0— M(m)—- P(-m=-2) > M(-m-2) - 0.

The following proposition tell us that the above examples are actually all of the examples of inde-
composable modules in O(sl5).

Proposition 8. The following short exact sequences
0— M(-m—-2)— M(m) > V(m)—0
0—-V(m)—> M (m)>M-m-2)—0
0->M(-m-2)—=P(-m—-2)—> M*(m) —0
0— M(m)— P(-m—2) > M(-m—2) -0

are a complete set of equivalence class representatives of non-split short exact sequences of represen-
tations in the category O(sl,).

A proof can be found in [FH]. In particular, every indecomposable representation in the category
O(sly) is isomorphic to one of the examples given above.
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Figure 3.2: More sl-modules.

3.4 A matching example

At this point, for each nonnegative integer m, we have found two simple representations (M {(—m — 2)
and V' (m)) and three indecomposable representations (M (m), M*(m), P(—m — 2)) of sly(k).

The next step is to match these representations with representations of some quiver. In order to do
that, we consider the quiver with relation given in Example 3.1.5. The following proposition gives the
classification of the simple and indecomposable representations of this quiver.

Proposition 9. For the quiver with relation given in Example 3.1.5, there are two simple representa-
tions given by




and there are three indecomposable representations given by:

3.
1
ke ok
0
4.
0
ke ok
1
S.
(01)
ke o k2

To prove this proposition, we use the previous results described above.
Notice that we have exactly the same number of simple and indecomposable representation. This
suggests the following correspondence between each simple and indecomposable representations:

Proposition 10. There is a bijective correspondence, which preserves inclusions and quotients, be-
tween equivalence classes of simple and indecomposable modules of the 2-Kronecker quiver with rela-
tion from Example 3.1.5 and the simple and indecomposable modules of O(sly), given as follows:

o 1= V(m)
20 M(-m-2)
® 3 M*(m)
o 4. M(m)
¢ 5 P(-m—2)
Proof. By Proposition 8, we have short exact sequences

0—=V(m)— M (m)—> M(-m-2)—0,

0— M(-m-2) > M(@m) - V(m) -0,
0— M(-m—-2)— P(~m—2) - M*(m) — 0,
0— M(m)— P(-m—2) > M(-m —~2) - 0.

Quiver representation #5 above has representations #2 and #3 as subrepresentations; #4 has #2 as a
subrepresentation; and #3 has #1 as subrepresentation.

The result follows by observing that P(—m — 2) has two lie algebra subrepresentations correspond-
ing to the two quiver subrepresentations of #5. Then by a dimension analysis for the last exact sequence,
we get the correspondence between the two simple representations. Similarly, M (m) has M (-m—-2)
as a subrepresentation, corresponding to the quiver subrepresentation #2 in #4, and M*(m) has V(m)
as a subrepresentation, corresponding to the quiver subrepresentation #1 in #3. O

This correspondence is not an accident. In fact, the 2-Kronecker quiver corresponds to the Lie
algebra sl, under a correspondence developed by Kac and Moody. In this more general matching, a
quiver corresponds to a matrix representing (¢;;) where ¢;; is the number of arrows between vertices
vand j. This matrix then is used to formulate a set of relations which describe the corresponding Lie
algebra.
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Abstract

Complex networks such as the World Wide Web and social relationship networks are prevalent in the
real world, and many exhibit similar structural properties. In this paper, a fitness-based model is devel-
oped for these complex networks. This model employs a purely “better-get-richer” method of network
construction that is believed to realistically simulate the growth process of most real-world networks.
Both computer-simulated results and theoretical analysis show that the degree distribution of networks
created with this model depends on the distribution of vertex fitnesses; a power-law fitness distribution
results in the commonly observed scale-free network structure. In addition, results indicate a small
average path length and large clustering coefficient, in accordance with real-world phenomena. It is
proposed that this model may serve as a possible explanation of the prevalence of scale-free networks
in the real world.}

4.1 Introduction

There are many examples of complex networks in the world, from the more common World Wide
Web and social relationship networks to the more obscure power grid of the Western United States and
network of scientific paper citations. Over the past decades, researchers have noted that many such
real-world networks exhibit similar properties in structure and have studied and modeled them together
under the term complex networks. A greater understanding of the structure of these abstract complex
networks will undoubtedly heighten our understanding of the behavior of their real-world counterparts.
Indeed, the study of complex networks has already led to advances in areas such as immunization and
Internet simulation [BB1]. In this paper, we will provide a model of network growth similar to an
existing model, but we will incorporate a fitness concept, and we will examine the structural properties
of our model in comparison to real-world phenomena.

4.2 Background

In the field of complex networks, the individual network components are represented by vertices of a
graph and the connections between them are represented by the edges. For instance, the vertices of a
network representing the World Wide Web would be the web pages, with two vertices connected by an

tZhou Fan, Harvard °10, is a prospective concentrator in mathematics or applied mathematics. He was born in Hangzhou,
China and grew up in Parsippany, New Jersey, where he graduated from Parsippany Hills High School.

4Part of the research for this paper was conducted at the 2005 Research Science Institute under the guidance of King Y. Yick,
sponsored by a grant from the Center for Excellence in Education.
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edge when there is a link from one page to the other. (For the purposes of this paper, we consider only
undirected and unweighted edges.) It has been observed that the vertex degrees of a large majority of
complex networks satisfy a power-law distribution, and such networks are called scale-free [AB].

The Barabdsi-Albert model (BA model), one of the most basic and widely-accepted models of
complex networks, captures their scale-free structure [AB]. The BA model constructs networks based
on the two ideas of network growth and preferential attachment: more popular vertices of a network
attract more new vertices. In addition to being scale-free, networks constructed using this model have
a small average path length between vertices and display a relatively high tendency for a vertex’s
neighbors to connect to each other; this tendency is known as clustering. Both of these properties
are also observed in real-world networks [AB]. One should note, however, that the BA model always
predicts a power-law degree distribution where the probability density function of the vertex degrees,
k, scales according to k3, while the degree distributions of real-world networks have varying powers
of k. Also, a few real-world networks have an exponential degree distribution [St].

4.3 Fitness

The BA model relies on preferential attachment, the idea that a more popular website or scientific paper
will attract more links or citations. A fundamentally different concept is that a more helpful, useful,
ingenious, or simply “better” vertex will attract more such edges. This second concept is fitness-based,
and the “better” vertices are deemed to be more fit. A weakness of the BA model is that it does not
address fitness; for example, it does not allow a newer but very good scientific paper to become more
frequently cited than an older but less significant one. Thus, a modification of the BA model has been
developed that uses both preferential attachment and fitness [BB2]. This modified model, in essence,
assumes that preferential attachment and fitness are separate and parallel causes of network structure.

In our paper, we examine whether a model based on fitness alone, without preferential attachment,
can produce results similar to those produced by the BA model. This is intuitively reasonable; for
example, a popular scientific paper probably becomes more frequently cited because it is better than
other papers. We thus hypothesize that a model based solely on the fitness concept may produce results
similar to those of the BA model. It should be noted that a network model based solely on the fitness
concept has already been developed by Caldarelli et al., but it uses an approach to network construction
different from that used in the BA model [CCRM, SC]. In this study, we instead examine a network
construction algorithm based on the BA construction algorithm, but we employ the fitness concept
instead of preferential attachment.

Specifically, our algorithm is as follows: Fix a probability distribution of fitnesses, p(n), and the
number of edges m with which a newly formed vertex starts. When the network grows sufficiently large
so that the initial vertices do not matter, m becomes the average vertex degree. Begin with Ny vertices,
where Ny is small. Randomly assign to each vertex a fitness value 7 from the fitness distribution p(),
where a high value of 7 corresponds to a vertex that is more fit. Once a fitness value is assigned to a
vertex, it does not change. Ateachtime stept = 1,2,3,. .., add one vertex to the network, connect it to
m existing vertices, and assign to it a fitness value based on p(n). For each of these m new connections,
the probability of connecting to an existing vertex 7 with fitness 7; is proportional to 7). i.e.,

i

po
N
Zj:l 5

with IV being the size of the network prior to the addition of this new point. We connect the m edges
so that no two edges connect to the same vertex.
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4.4 Degree Distribution

The degree distribution of networks created using this fitness-based algorithm can be examined using
the continuum theory, a method developed by Barbsi and Albert in which network growth is treated
as a continuous process to allow simplification of the model using calculus [AB]. Such an approx-
imation should match closely with discrete network growth, provided that we consider networks of
sufficiently large scale, i.e., networks that undergo a large number of timesteps. Consider a vertex V
with fitness 7, and assume that its degree ky is a continuous function of time. Because during each
unit of time m new edges are formed, we expect that

dkv n

—_— A Mm—

N
dt Z]-:l ]

For large enough NV we can make the approximation

N

an ~ Nij = (No + t)7,
=1
where 7 is the expected value of 7. So
dky n

it " No+ 07

Integration yields

mn mn
k :/—_dt:Tth'{‘t'{‘C.
Y (No + )7 g ot

Let ¢ be the time that this vertex was added to the network. Since ky = m at time ¢t = to,

C:m——%gln(Ng—i-to)

7]1 No+1t

ky =m+
No-{-to

We can now calculate the cumulative distribution function (CDF) of ky as

mn Ny +t
Plky <k)=P + —1In <k
(V_ ) (m n IN0+tU )

=P[In No +¢ < n(k —m)
No+ty mn

N,
:1P><_—°+l—Nogt0>.

A(k—m)
e mn

There are N() + 1 total vertices in the network, so for any particular 7,1 < 7 < ¢, the probablhty that
to = T11is il + 7 and the probability that ¢, = 0 (the vertex is a starting vertex) is =22 Thus in the

No+t-
 continuous analogue, P(t' < tp) = Xt 50 So

No+t’
Ny +t
P(ky < k) =1P’<—,7?k—i,)—NoStu)
e T
1 [ <No+t )]
= t— mk—mm —N()
No+t e"('le
A(m —k)
=1—¢e mn

44



£ Uercices £ Vertices

Vertex D

AL i h Vertex Degree it -
100 150 200 250 300 100 150 200 250

S

# Vertices £ Vertices

A e

Vertex Degree L i Vertex Degree
250 300 100 150 200 250 300

Figure 4.1: Predicted and simulated degree distributions. Solid lines represent predictions of the continuum
theory and scatter plots represent simulated results for (a) uniform p(n), 0 < 1 < 1; (b) exponential p(n) = e~ ",
0 < 1 < 00; (¢) power-law p(n) ~ 773, 1 < 1 < 00; (d) power-law p(n) ~ ™%, 1 < 1 < 0.

We obtain the probability density function (PDF) of the vertex degree by differentiating the CDF with

respect to k:
d N atm=k

This is the PDF for the degree of a vertex of fitness 7, which we will denote as P(k,). To obtain
the overall PDF, we take a weighted average of these fitness-based PDFs with the weights being the
probabilities of having a fitness 7. In other words,

Py = [ " o) P(ky)dn,

or

Mmax = _
n A(m—k)
P(k :/ — el dn. “.1)
(k) \ p(n)m77 n

min

In this overall PDF, k is the continuous random variable for vertex degree, m is the constant for the
average vertex degree, p(n) is the PDF of fitnesses 7, 7 is the expected value of 7 as determined by
p(n), and Nmiy and 7,y are the bounds of the fitness values. It is important to note that this PDF does
not depend on the present time ¢ or the network size N. That is, as long as the size of the network is
large enough so that the initial approximations are true, the PDF for the vertex degrees is constant over
time as new vertices are added to the network.

We can scale equation (4.1) by multiplying by the total number of vertices N to predict the degree
distribution of the network. To verify the predictions of the continuum theory, we numerically simulated
this network construction algorithm for m = 50, N = 5000 and a variety of distributions p(n) and
calculated the degree distributions. The data from the simulations matches our theoretical result (Figure
4.1).

We also note that, as in previously developed fitness-based modifications of the BA model, P (k)
depends on the fitness distribution p(7), and that for our model P(k) is very versatile and varies greatly
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Figure 4.2: Semilog plot of P(k) for uniform p(7),0 < 7 < 1 and m = 10.
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Figure 4.3: Log-log plot of P(k) for m = 10 and (a) p(n) ~ 12, (b) p(n) ~ n~*%. Solid lines are plots of
P(k); dashed lines are plots of k=2 and k~* for (a) and (b) respectively.

with different fitness distributions. Evaluating this integral for a uniform fitness distribution over vary-
ing bounds and average vertex degree m results in varying exponential-tailed distributions for P(k);
one distribution is shown in Figure 4.2. Evaluating this integral for a power-law fitness distribution
p(n) « n~° over varying m yields distributions of P(k) with power-law tails of the same power —b;
two such distributions are shown in Figure 4.3. Thus, with different power-law fitness distributions, we
can obtain scale-free networks with degree distributions of various powers.

4.5 Path Length

Two other empirical properties observed in real-world networks are a small average path length between
vertices and a high tendency for small clusters of highly connected nodes to form. We examined
path length and clustering of networks produced by our model using computer simulations, and we
draw comparisons both to empirical data and to results of the BA model. All data for path length
and clustering coefficients are average values over 50 network constructions. We find through our
simulations that our fitness-based algorithm does generate networks with small average path lengths.
Using a power-law distribution with power —b, we find that for fixed values of N and m, the average
path length of a network quickly increases to a low asymptotic limit as b increases (Figure 4.4a). Fixing
m and b, we observe that the average path length increases logarithmically with N, a phenomenon also
observed both in the original BA model and in random graphs (Figure 4.4b) [AB]. However, as in
the BA model, the path lengths of our networks are of the same order of magnitude but consistently
lower than those of real-world networks of the same size and average vertex degree, indicating that our
algorithm may be overly effective, as compared to real-world processes, in bringing the vertices of the
network closer together.
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Figure 4.4: (a) Linear plot of path length versus b for N = 300 and m = 3. (b) Log-linear plot of path length
versus NV for b = 3 and m = 3. Solid line is the exponential regression curve.
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Figure 4.5: (a) Linear plot of clustering coefficient C versus b for N = 1000 and m = 10. (b) Log-log plot of C
versus N for b = 3 and m = 10. Solid line corresponds to N %7, and dashed line corresponds to C for a random
graph with m = 10.

4.6 Clustering Coefficient

To quantify the concept of clustering, we use the clustering coefficient C' developed by D. J. Watts
[Wa). C is the average of H%'—T) for all vertices i in the network, where k; is the degree of vertex
i and E; is the number of edges in the subgraph of its k; neighboring vertices. As in the case path
length, if we fix the network size NV and the average vertex degree m, then the clustering coefficient
rapidly decreases to an asymptotic limit as b increases (Figure 4.5a). To obtain an idea of how large
or small these clustering coefficients are, we fix m and b and compare the clustering coefficients of
our networks to those of random graphs for different values of N (Figure 4.5b). We first note that the
clustering coefficients of our networks are consistently higher than those of random graphs of the same
size (whose clustering coefficients are given by %), and this difference increases with the size of the
network. Secondly, C decreases with N as a power-law, as is observed for both random graphs and BA
networks. Finally, the power of this relationship between C and N is -1 for random graphs, -0.75 for
BA networks, and -0.70 for our fitness-based networks, while for real-world networks, this power is 0
and network size does not seem to affect the value of C [AB].

4.7 Conclusion
We have created a network model that parallels a simple and accepted existing model, the BA model,
but that uses a “better-get-richer” instead of “richer-get-richer” growth algorithm. Our study indicates

several important facts about our fitness-based network model. The first is that through a power-law
fitness distribution, we can obtain scale-free networks. It may seem that having a power-law fitness
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distribution is an arbitrary criterion, but in many real-world situations where individuals such as people
or cities are ranked according to wealth or some other measure of “fitness,” these fitnesses fall under a
power law distribution, as is stated in the empirical Zipf’s law [CCRM]. Thus, it may be a reasonable
hypothesis that real-world networks have power-law fitness distributions. If this were true, our model
would indicate that Zipf’s law and the ubiquitous nature of scale-free networks in the real world might
be related phenomena. The varying powers of the degree distributions of real networks can be explained
by varying powers of fitness distributions; the analysis of our model shows that these two powers are
equal.

A second observation is that in our model, non-power-law distributions of fitness result in other
network structures. Specifically, a uniform fitness distribution results in an exponential degree distribu-
tion. This may be related to certain real-world networks that are indeed not scale-free but follow such
an exponential degree distribution. The Western United States power grid and the network of neurons
in a human brain are notable instances of such exponential distributions [AB]. The structures of these
two networks in particular are heavily influenced by the physical location of their vertices, and thus the
vertex fitness values may be more indicative of the number of other vertices that physically surround
them and thus may fall under a relatively more uniform probability distribution than the fitnesses of
networks without this distance restriction.

A final observation is that our fitness-based networks with power-law fitness distributions very
closely resemble the BA network, particularly with respect to how path length and clustering scale
with network size. Along with a scale-free degree distribution, this is evidence that our models are very
similar in structure to BA networks. Thus, we have shown that newly added vertices of a network do
not need knowledge of the popularity of the current vertices in order to maintain a scale-free network
structure, and that knowledge of the vertex popularity values (as in the BA model) does not alter three
of the most significant structural properties. It should be noted, though, that this result is dependent on
the hypothesis that fitness distributions are power laws.

Important work needs to be done in studying on a microscopic level the growth patterns of partic-
ular real-world networks to determine their underlying fitness distributions. Further work in this area
can also be done by examining models with vertex fitnesses that vary over time, as well as by adding
complications such as directed and weighted edges. Overall, we have shown that a fitness-based varia-
tion of the BA model can produce some of the important trends observed in the structure of real-world
complex networks.
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Abstract

The practice of neglecting small terms of an equation is analyzed in the case of polynomial root ap-
proximations. Our discussion centers on the following new result: The roots of a polynomial can be
approximated self-consistently by roots of much simpler equations consisting of pairs of terms from
the polynomial.

5.1 Introduction

The essence of mathematical modeling is to take a real-world question and translate it into a mathe-
matical problem which can then be solved, yielding insight into the ori ginal question. In the course of
such modeling, approximations must invariably be made.

It is not an exaggeration to say that all important equations take the schematic form

tl(p17p27"')+t2(p17p27"')+"' :07

where ¢, are arbitrary terms and py, are arbitrary parameters.

One commonly used approximation simplifies these equations by choosing some subset of terms
deemed to be the most important and then neglecting all the others. If we choose only the two largest,
we end up with

tz(Pl,p27~~-)+tj(P1yP2»--~) = 0.

We will refer to such an approximation as a dominant balance approximation, since it seeks a
solution which “balances” the two dominant terms against each other. The question we are interested in
is: How often can solutions to an equation be approximated by the behavior of a few dominant terms?

We investigated this question for the case of polynomial equations of arbitrary order in a single
variable.

Bryan Gin-ge Chen, Harvard '07, is a physics concentrator in Adams House. He hails from Centerville, Ohio, where he
attended Centerville High School. His mathematical interests extend freely to all that is unreasonably effective in the natural
sciences, including calculus and linear algebra, scaling and similarity solutions, topology, and symmetry.
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5.2 Example: a5z° + a1z +ap =0

When are the roots of this quintic trinomial dominated by the behavior of just two of the terms? In
other words, when are the roots of the equations

a5z5 +a;jz =0
asz’ +ag=0

a1x+ag=0

close to the actual roots?

Note that if the roots of these equations are relatively close to the true roots, then we have indeed
found simple solutions to the trinomial equation — these approximations depend on only two coeffi-
cients!

We say that a choice of terms yields a self-consistent root when those terms are larger (in absolute
value) than any other terms when we set z equal to the root of the simplified equation. For instance, the

1/4
roots of the equation for which we say that a5z° and a; z are dominantare t = 0 orz = (— %i) (all

four of these 4th roots). We ignore the z = 0 root as this is obviously inconsistent with our assumption
that asz® and a,x are largest near the root. Therefore the self-consistency condition is

as _— = |a1 _—
as as
4
or equivalently lg%‘gli‘ <1
1

Working out the other cases yields the following result:

> |agl,

0305
af
aéaﬁ
af

< 1 <= (ayz,a5z") and (ag, a1 ) yield self-consistent roots,

> 1« (ag,a5x5) yields self-consistent roots.

We plot true roots and approximate roots of one from each “class” of trinomial below:

0.& /

1N

~1.8 -1 -0.5 [ 0.5 1

=15 -1 -05 0 05 1 1.3

4
690z° + .669z + 1.19 = 0, | Lg2| = 10.4
1
true roots: -.956, - 471+ — .9914, .949+.7731;
approx. roots: -1.12. -.345+1.06¢, .902+.6561.

4
8327° — 1.620 + 692 = 0, | 2052 | = .0169
1
true roots: .434, 1.04, -1.27,-.0993+1.204;
approx. roots: .426, £1.18, +1.18i.

These examples were generated using MATLAB with coefficients drawn from a normal distribution centered at
zero with unit variance.



5.3 Generalization to Arbitrary Polynomials
It is possible to generalize the ideas in the previous column and prove the following result:

Theorem 1. Given a nondegenerate' polynomial anT" +an, ™ +an, ™ 4 - + an,z"? +ag where
n=mng >Ny >ny > >0, > nyyy = 0, all self-consistent approximations to the roots of
this polynomial will come from pairs {(a,z", an,, 1), (@n,, 2™, ap, x"2), -, (an,, z™s, ag)},
where {n;, } is a subsequence of the {n;} above.

The pairs of terms which give the self-consistent approximations can be bracketed together as
below:

I ] [ 1 [ ]
anz” +an, ™ + ot T+ et @n,, T 4 L+ an, T +ag

Theorem ! essentially states that this series of brackets will not cross itself, and will reach from the

anx™ term to ag. Note that since a pair (ajx’, arz®) yields k — j different approximate roots (via

the k%jth roots of —2&), the total number of self-consistent approximate roots is guaranteed to be
7

(nj, = 0) + (nj,_, —nj,) + -+ + (ny, — nj,) + (n — nj,) which telescopes to n.

The nondegeneracy condition in Theorem 1 excludes polynomials which have pairs of terms which
are not completely dominant at the approximate roots. In our quintic trinomial example, the degenerate
polynomials would be those for which l%‘gﬁ = 1. This condition gives us the set of polynomials for
which all three terms are equally large when evaluated at the approximate roots.

Note that Theorem 1 does not say anything about the accuracy of these self-consistent approxima-
tions — it merely states that they exist.

Sketch of proof. The key ‘trick’ is to transform the self-consistency inequalities by taking logarithms.
In the quintic trinomial example, letting A; = log |a;], we have:

Ap+ Ay —24, < 0= (A(),Al,Az) . (l,—2, 1) < 0,
Ap+ Ay — 24, >0= (A(),Al,Az) . (1,—2,1) > 0.

Here - is the ordinary dot product. The two classes have become half-spaces in R3.In the general
case, the classes are cones in R/~2 (where j is the number of terms) defined by a set of dot—product
inequalities. Using a 1958 result due to Samelson, Thrall and Wesler [STW], we can show that these
cones partition all of R7—2,

5.4 Self-Consistent Approximation Picture Gallery

The following polynomials were generated in MATLAB by choosing coefficients from a normal dis-
tribution with unit variance. The approximate roots were found by an algorithm based on Theorem 1.

4
The values e are quantities analogous to (ggéli
1

in the example, but are now chosen so that a root is
self-consistent if € < 1 for all e.

IFor the purposes of Theorem 1, a polynomial anz™ + an_12® ! + --- + ag is degenerate if the vector
(loglanl|,loglasn—-1],-..,log|ao]) is in the linear space spanned by (1,1,...,1) and (n,n—1,...,0).
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. . . - v
1 4 08 4
048
0.5f 0
o2f 1
0 < oF <
-0.2F 1
-ost 04 1
08}
-{F -04pr
a. 2 i 1 1 'y v 1
-15 ] 0.8 ) 0s 1 15 o Y] 6 o5 1
1.202° + 019822 + 1572 + 1.60 = 0 —0.172% + 059223 — 1.012% + 614z + 508 = 0
¢ = {1.24 X107, 3.34 x 1077} €; = {.501,.859,2.36 x 10~°}
true roots: -1.07, .525:+.9874; true roots: -.424, .673, -.138+.8954:
approx. roots: -1.10, .550+.9531. approx. roots: +.695, +.695:
08t y
N |
06F «
o4} ] 2 1
o2} 1t v
u - v 0 . 01}
-0.2p 1k 9 4
0.4 4
-2 E
-0.6F 1
-a
-0.8F - 1
-1 05 ] 0.5 1 -5 [) 5
8th order polynomial equation 2627 +1.212% 4+ 1.322% — 93127 — 01122+ .645 = 0
max €; = .0779, mine; = 1.07 x 1071¢ e; = {2.59 x 107,.719, .38, .235}
selected true roots: .927, -1.21, -.5094.4421; closest approx. true roots: -.695, .534+.4591, -2.50+.9484: approx. roots:
roots: .879, -.879, -.530+.53017 -1.09, .3944+.682%, 4.62, -7.88.

The approximate roots we chose in this way are in general quite close to the actual roots. However,
in the fourth plot there is a pair of complex roots that is approximated by a pair of real roots. It appears
that partitioning using Theorem 1 does not place some polynomials correctly.

5.5 Self-Consistency Is Not Enough

Though the self-consistency condition gives us a simple criterion for choosing dominant terms, the
choices do not always yield good approximations. The reason is that the self-consistency condition
completely ignores the possibility of multiple roots.

If we apply Theorem 1 to the quadratic equation asz? + a1z + a¢ = 0, we find:

apa?2
at

apaz
aj

<1 <= (a,z,asz?) and (ag, a,z) yield self-consistent roots,

> 1 <= (ag, azx?) yields self-consistent roots.

Thus the degenerate, borderline case is when = 1. However, by the quadratic formula

agay
ay
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- 2_4 . . .
T = iﬁ@ there is a multiple root when %‘}3 = %, so this should be the borderline case.
1

5.6 Series Expansions for Roots

Let us take a different approach now. Let our polynomial be Z;;O a;z? = 0. Choose two terms azz*

=
and a;z?. We now rescale by z — y (—gf) e , which yields (after division by a simplifying factor):

n

=
a. (-2 ’
n K n

. a
—y +...+yk+..._y1+...+—0._1:0,
ak\ ¥=7 ak\ F=7
-4 %
(-%) (%)

We can rewrite this as

ey F o1y ety e~y b g =0,
1 -
where foralll # k, 7, ¢ = ((—aj)l‘kafc_’af_]) "7 ltis clear that if the n — 1 coefficients c; are all

sufficiently small, then y ~ 175 and ¢ =~ ('_gf) = But what do we mean by sufficiently small?
We can write a series solution for y by assuming an ansatz of the form

o

_ Sp Sn—1 8o
Yk = E Asgys1,sn Ot Gy s

50,825..0,50 =0

where we have n — 1 quantities ¢; and s; (no Cj, Ck OF Sj, Sg)- It makes sense to say that the terms
are sufficiently small if this series converges. It is thus more natural to say that the pair axz*, a]-xj is
dominant at the root if the series for Y(j.k) converges (rather than using the self-consistency conditions)!
The self-consistency conditions are equivalent to requiring that all |¢;| < 1; however, the domain
of convergence of this series is in general a more complicated object.
Series solutions of polynomials can be written in terms of hypergeometric functions, but the do-
mains of convergence are only known in some cases; see [St, PT].

5.7 What If We Iterate?

Suppose that we have some method of choosing pairs of terms which gives us approximate roots from
dominant balances. Note that

(n) (n—1)
by - 17O 0 S0

AR ] 4 f(0),

where f(™ is the m-th derivative of f.
The approximate root we get by assuming that the j-th and k-th terms are dominant is then

. 1
f(])(O N\
—*m—)(’“ 2
f®0)
To improve on this root, instead of deriving the next term of a series (as in the previous section),
. b
consider f(u — z;) where z; = (—%g%(k - j)!) ¥~ Note that for any z1, the roots of f(z) are

precisely u + z; for the roots u of the polynomial f(u + z1). Using Taylor’s theorem, we have

(n) (n-1)
flutz)= ! n(!zl)u" + f(n — Sz;)u"“l

++ f(2).
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If the terms proportional to u? and «4 (with ¢ > p) are dominant terms of this polynomial, an

P
approximate root of this polynomial will be u, = (—%%(q - p)!) “"", which gives us

FP(z) P
zm=ust+2z =2+ |—-==—2(g—p)! .
2 2 1 1 ( 7@ (z) (g-p)
In general, there are multiple choices of pairs of terms which will give us dominant terms. Further-
more, each of these (k — 7)th root expressions above will have k — j different solutions — this shows

that this process will branch. If we keep iterating, we have the recursive function:
1
(Pm) (4 T
Tm41 = Zm T+ (““f_ﬁ(@m_pm)!) .

f(qm) (Zm)
Note that if ¢,, = 1 and p,, = 0 for all m, this process no longer branches. In fact, we now have

f(zm)

Zm+1 :Zm”f,(z )7
m

which is precisely Newton’s Method! Thus we may interpret Newton’s method as an iterated dominant
balance method which always assumes that the 1st order and Oth order terms dominate, or rather, we
might interpret the iteration of a dominant balance method as a branching version of Newton’s method.

If we color each point in C according to which point it converges to upon iterating Newton’s
method, we produce the Newton fractal. Similarly, with a branching algorithm, we can color the
points of C according to which set of points we obtain. Below, we compare the “Newton fractals” of
Newton’s method, and iterating the self-consistent root algorithm based on Theorem 1.

This image shades each point in the plane according to which This image shades each point in the plane according to which

roots it goes to on iteration of the self-consistent roots method. roots it goes to after iterating Newton's method.

5.8 Conclusion

The results described in this paper give evidence in one case for a fact which equation-solvers have
known intuitively for a long time: the solutions to equations are often determined in a large part by
the behavior of the largest terms in the equation. Are there similar results for other equations — in
particular, ordinary differential equations or partial differential equations?
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Abstract

The ABC conjecture is a central open problem in modern number theory, connecting results, techniques
and questions ranging from elementary number theory and algebra to the arithmetic of elliptic curves
to algebraic geometry and even to entire functions of a complex variable. The conjecture asserts that,
in a precise sense that we specify later, if A, B, C are relatively prime integers such that A + B = C
then A, B, C cannot all have many repeated prime factors. This expository article outlines some of
the connections between this assertion and more familiar Diophantine questions, following (with the
occasional scenic detour) the historical route from Pythagorean triples via Fermat’s Last Theorem to
the formulation of the ABC conjecture by Masser and Oesterlé. We then state the conjecture and
give a sample of its many consequences and the few very partial results available. Next we recite
Mason’s proof of an analogous assertion for polynomials A(t), B(t), C(¢) that implies, among other
things, that one cannot hope to disprove the ABC conjecture using a polynomial identity such as the
one that solves the Diophantine equation x2 + y*> = 22. We conclude by solving a Putnam problem
that predates Mason’s theorem but is solved using the same method, and outlining some further open
questions and fragmentary results beyond the ABC conjecture.?

6.1 Pythagorean triples: z? + y? = 2?

An ordered triple (x,y, z) of integers is called a Pythagorean triple if and only if it solves the Dio-
phantine equation 2 + y? = z?; that is, if and only if |z| and |y| are the lengths of the sides, and
|2] the length of the hypotenuse, of a right triangle. (We allow degenerate triangles with a “side” of
length zero.) It is well-known that every such triple is proportional to

2 _n?2mn,m? 4+ n?) 6.1)

(z,y,2) = (m
for some integers m,n. Equivalently (dividing by n? to obtain polynomials in the single rational
variable t = m/n), the solution (z, y, z) is proportional to (¢t2 — 1,2¢,¢* + 1) for some ¢t € Q, or to
(1,0, 1) which arises for “t = oo” (corresponding to (m,n) = (1,0)). That is, all Pythagorean triples
are accounted for by the single polynomial identity

(2 — )2+ (202 = * +1). (6.2)

TNoam D. Elkies earned his doctorate in mathematics in 1987 at Harvard, where his advisors where Professors Barry Mazur
and Benedict H. Gross. After three years in Harvard’s Society of Fellows he joined the Mathematics faculty and has remained at
Harvard since. Most of his research is in number theory, usually Diophantine geometry (the combination of algebraic geometry
and Diophantine equations) and/or computational number theory. Other interests include some combinatorial mathematics (lat-
tices and codes, incidence geometry, and combinatorial games) and, outside of mathematics, classical music (mostly composition
and piano) and chess (usually chess problems and endgames).
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This classical fact can be profitably approached from many points of view.! In one familiar approach,
illustrating an important methed in algebraic geometry, we first divide by 22 to obtain the equivalent
(z/2)* + (y/2)* = 1, s0 we now seek rational solutions of X2 + ¥'2 = 1, or geometrically a rational
point (a point with both coordinates rational) on the unit circle. Note that two nonzero solutions
(z : y : 2) in integers yield the same solution (X, Y) in rationals if and only if they are proportional,
so that by going from z® + y* = 22 to X2 + Y2 = 1 we have automatically identified proportional
Pythagorean triples (corresponding to similar right triangles). The unit vector (1,0) is an obvious
rational point on the circle. This point yields only a degenerate Pythagorean triple, but we can use it to
find any other rational point (X, Y) using the straight line through (X, Y') and (1,0). The general such
lineis ¥ = —¢(X — 1), where the slope —¢ must be rational if X and Y are. (We choose —t rather
than ¢ for consistency with equation (6.2).) Substituting —t(X — 1) for Y in X2 + Y2 = 1 we get the
quadratic equation X + ¢>(X — 1)? = 1, one of whose solutions must be X = 1. The other solution
is then the root of

X2+ 23X -1)?%-1

X-1

thatis, X = (t*—1)/(t?+1). ThenY = —¢(X —1) = 2t/(t2 + 1), so we have recovered the rational
point corresponding to the solution (¢> — 1, 2¢,¢% + 1) of 22 + y2 = z2. See Figure 1, which shows
this construction for ¢ = 2.

This procedure readily generalizes: instead of X2 + Y2 — 1 we can use any irreducible polynomial
P(X,Y) of degree 2, and instead of the initial point (1,0) we can use any rational solution (X0, Yo)
of P(X,Y) = 0; the lines through (X, Y5) not tangent to the curve P(X,Y) = 0 at that point then
parametrize all other rational points on the curve. [Try X? + Y2 = 2and Xy = Yy = 1. What goes
wrong if we attempt this for P(X,Y) = X2+ Y2 and X, = Y; = 07 Note that X2 + Y2 is irreducible
over the rationals, but not over C where it factors as (X +4Y)(X — iY").] The technique even works in
some settings beyond plane curves of degree 2, including notably degree-3 plane curves with a double
point; see Figure 2 for the example of the double point (0,0) on the curve (X + Y = XY. In
our special case of X* + Y2 = 1 and (X, Ys) = (1,0) we can make yet another connection: if
(X,Y) = (cos,sin6) then our line Y = —¢(X — 1) makes an angle of 6/2 with the vertical. This
can be seen by elementary plane geometry for 0 < 6 < , starting from the fact that (0,0), (1,0)
and (X,Y’) are vertices of an isosceles triangle (this too is shown in Figure 1); in general one must
remember that § is defined only up to integer multiples of 27. In any case, this gives t = cot(6/2),
$O our parametrization is equivalent to the trigonometric half-angle formulas that give cot(0/2) as a
rational function of (sin 8, cos #) and vice versa:

=2+ 1)X - (t* - 1),

6 sinf cot?(6/2) — 1 2cot(8/2)
t - = —_— == —-17 = —. .
S T T cost’ cos cot2(6/2) + 1’ siné cot?(6/2) +1 ©3)

These formulas reappear in integral calculus in the guise of the universal substitution that con-
verts [ f(sin@,cos 8) df (where f is any rational function) into | F(¢) dt for some rational function
F' € R(t), which can then be expanded in partial fractions to obtain an elementary antiderivative.
Equivalently this lets us integrate any rational function of X and v/1 — X2 with respect to X, and the
generalization to quadratic P(X,Y’) = 0 lets us replace /1 — X2 by the square root of any quadratic
polynomial.

!Besides the algebro-geometric method we follow, at least four others come to mind, which suggest various perspectives
on and generalizations of the result. The most elementary may be to begin with the trigonometric identities (6.3), or with an
equivalent geometric calculation with isosceles and right triangles. An elementary derivation from unique factorization in Z is
obtained by removing common factors from (z, y, z), switching x, y if necessary to make z odd, and using the factorization
2% = 22— y? = (2 — y)(z + y) and the fact that ged(z — y,2 + y) = 1 to write z + y = (m % n)? for some
coprime integers m, n. See for instance [IR, p.23, Exercise 12]. Alternatively, factor 22 = (z + iy)(z — iy) in the ring
Z[i] of Gaussian integers, and use unique factorization in Z[d]; this explains why = and y are the real and imaginary parts of
(m +in)2. Finally, for X,Y € Q wehave X2 4+ Y2 = 1 if and only if the element X + iV of Q(3) has norm 1, which by
Hilbert’s Theorem 90 is equivalent to X + iY = w/% for some nonzero w € Q(i). Taking t = Re(w)/ Im(w) we recover
X +1Y = (t2 — 14 2it)/(t? + 1). See [Ta].
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(3/5,4/5) (2/27,4/27)
o Lo | X
[/
2\ y=—ax-1)
Figure I: X2 +Y2=1 Figure 2: (X +Y)3 = XY

But we have digressed from our main plot, to which we now return by looking at 22 + y? = 22

and the parametrization (6.1) or (6.2) from another point of view. We ask: How many solutions does
the Diophantine equation t* + y? = z? have in integer triples (z,y, ) ? Our parametrizations provide
infinitely many (z, y, ) even when we identify proportional solutions, but we can still ask how common
these solutions are. To make this vague question more precise, for all N > 0 define C(/N) to be
the number of solutions of 22 + % = 2? in integers such that z2, 42, 22 are relatively prime and of
absolute value at most N. (We give the condition on z, y, z in this form because of the way we intend
to generalize it to other Diophantine equations, though of course for 22 + y2? = 22 the absolute value
condition is equivalent to the single inequality 2> < N.) Then the existence of infinitely many non-
proportional Pythagorean triples is equivalent to the fact that C(N) — oo as N — oo, and we ask:
How quickly does C(N) grow?

Using either of the forms (6.1) and (6.2) of our parametrization of Pythagorean triples we see that
C(N) should grow as some multiple of N'/2. For instance, (6.1) gives points (m,n) in the circle
m? + n? < N2, whose number is asymptotic to the area 7N1/2 of the circle. This is not quite
right because we must count only relatively prime (m, n), and if both /2 and n are odd then we must
remove a common factor of 2; but each of these corrections changes the asymptotic formula only by a
constant factor. As it happens this factor is 2/(3¢(2)) = 4/, making C(N) ~ (4/m)N'/2. But it is
the exponent 1/2 that concerns us here, and we could have guessed this exponent much more easily as
follows. Let A = z2, B = y%, and C = 22. Then

A+B=C,

and the number of solutions of A + B = C in relatively prime integers in [N, N is asymptotically
proportional to N2, Of the 2N + 1 integers in {— N, N|, approximately N'/2 are squares (and all but
one are squares in two different ways, but this will not affect the exponent of /N, only the coefficient
of that power). So, if we pick A, B, C independently and uniformly at random from the integers in
[=N, N], the probability that all three will be squares is asymptotically proportional to N —3/2_ While
we actually choose A, B, C not at random but subject to A + B = C, it seems a reasonable guess that
the fraction of such (A, B, C) all of which are squares is still roughly N ~3/2, giving a total of roughly
N2-% = N/2 such triples in that range.

If you think this seems suspiciously easy, you are right: we are only guessing the correct answer
(up to a constant factor), not proving it. This kind of heuristic is quite naive, and can easily fail.
For instance, for the equations x2 + y? + 22 = 0 or 22 + y? = 322 we might similarly expect the
number of solutions with all three terms in [—N, N| to grow at the same N'/2 rate. But neither of
these equations has any solution other than the trivial (0, 0, 0): the first obviously so, because the terms
z2, 2, 22 are all nonnegative; and the second because after removing common factors from (z, y, z)
we get a contradiction mod 3.2 In the other direction, the heuristic might grossly underestimate the

2In fact these two obstructions are more similar than they might seem: x2 + y2? + z2 = 0 has no nontrivial solution in the
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number of solutions. Consider for example solutions in relatively prime integers of (z + y)° = zyz
(the homogeneous form of the curve (X + Y)® = XY shown in Figure 2). We might expect very
few solutions, on the grounds that there are about 83 triples (z,y, z) of integers in [~ H, H], and
in that range (x + y)3 — zyz can be as large as a multiple of H3, so should vanish with probability
only ¢/H? for some ¢ > 0, leaving a constant expected number of solutions no matter how large H
is. Somewhat more reasonably, we could start with the number of solutions in max(|z|, [y|,|z]) €
(2"=1,2"] and then sum over h < log, H;; but even then we would guess that the number of solutions
with max(|z|, |yl, |2]) < H grows only logarithmically. But in fact the rational parametrization by
lines through the origin shows that the correct order of growth is H%/3, Here the failure of the naive
heuristic can be attributed to the singularity of our curve at the origin. In higher dimensions, examples
are known where our heuristic fails for other, subtler reasons.

Still, such failures are not surprising. What is remarkable is how often such a naive heuristic gives
the correct answer when this answer can be established, and an answer consistent with or close to the
predictions of more refined conjectures and heuristics when the correct answer is not known but the
problem fits into a suitable mathematical framework. In the next few sections we illustrate this by
successively generalizing the problem of solving 22 + y2 = 22 until we reach the ABC conjecture.

6.2 Fermat’s “Last Theorem” (FLT): 2" + y" = 2"

Of the many fruitful generalizations of 2 + y? = 22, one of the most natural and by far the best
known is the Fermat equation z™ + y™ = 2" forn > 2. Again we seek solutions in nonzero integers,
or equivalently solutions of X™ + Y = 1 in rational numbers X = z/z, ¥ = y/z. The locus of
X" +Y™ = 1is known as the n-th Fermat curve; Figures 3 and 4 show part of the real locus forn = 3
and the entire real locus for n = 4, and are typical of the visual appearance (albeit not necessarily of
the arithmetic or algebraic geometry) of Fermat curves with n > 3 odd or even respectively.

Y Y

S~—

o)
_

Figure3: X3 +y3 =1 Figure 4: X% +Y4=1

Fermat’s “Last Theorem” (FLT) is the assertion, recorded by Fermat in 1637 and proved by him at
least for n = 4, that for n > 3 there are no solutions of z" + y™ = 2" in nonzero integers; equivalently,

real field R, and 2 + y2 = 322 has no nontrivial solution in the field Q3 of 3-adic numbers. Since we live in the real world
rather than the 3-adic world, the former obstruction is more intuitive to us, but both R and Q3 (and more generally Q,, for any
prime p) are completions of @ with respect to the corresponding valuations on Q, and decades of experience have shown the
advantage of regarding the real and p-adic valuations of Q on as equal a footing as possible.

At this point we cannot resist another digression. Both 22 + y2 + z2 = 0 and 22 4 y? = 322 are obstructed not just over R
and Q3 respectively, but also over Q2. It turns out that for any irreducible homogeneous quadratic P(z, y, z) there are at most
finitely many completions of Q in which there are no nonzero solutions of P(z, y, z) = 0, and that the number — call it v — of
such completions (either real or p-adic) is always even; this is equivalent to Quadratic Reciprocity. Conversely, any finite subset
of {R,Q2,Q3,Q5,Q7,.. .} of even size can arise this way, a fact that ultimately amounts to the determination of the 2-torsion
of the Brauer group of Q. Finally, if v = 0 then P(z,y, z) = 0 does in fact have nontrivial rational solutions; that is, the Hasse
principle holds for homogeneous quadratics in three variables over Q.

60



that the n-th Fermat curve has no rational points other than (+1,0) and (0, £1) (with minus signs
allowed only when n is even). Why should n > 3 behave so differently from n = 2? Let us consult our
heuristic for estimating the expected number of solutions of 2™ +y™ = 2" with max(|z™|, |y"|,|2"]) €
(N/2, N]. (Every solution (z,y, z) will satisfy this condition with N = 2" for a unique nonnegative
integer h.) As before we write (A, B,C) = (z",y",2"), and observe that A + B = C, and that
the number of triples (A, B, C) of integers with A + B = C and max(|A|,|B},|C}) € (N/2,N]
is asymptotically proportional to N2, But now we want each of them to be not a square but an n-th
power for some n > 3, and n-th powers get rarer as n increases. Indeed the number of n-th powers in
[=N, N] grows only as N'/™, so the probability that three integers A, B, C chosen independently and
uniformly at random in that range are all n-th powers is asymptotically proportional to N 3(/m)-1),
We thus expect roughly N2+3((1/7)=1) — NB=n)/n guch triples with A + B = C. The exponent
(3 — n)/n is positive, zero, or negative according asn < 3, n = 3, orn > 3. Taking N = 2"
and summing over h, we thus expect the solutions to be plentiful for n < 3 (the number of solutions
up to N growing as a positive power of N), sparse for n = 3, and finite in number for n > 3. The
same should be true of primitive® integral solutions of Agz™ + Boy™ = Cyz" for any fixed choice of
Ao, By, Cy, corresponding to rational points on the curve AgX™ + BoY™ = Cj.

It turns out that each of these predictions is essentially correct. For n = 1 the result is almost trivial.
For n = 2 we saw that, once the curve Ag X2+ ByY? = Cj has a rational point P, the lines through P
yield the expected plenty of rational points on the curve. For n > 3 we must appeal to more advanced
and recent results on Diophantine equations. When n = 3, the curve E : AgX3 + BoY? = C
is a nonsingular cubic plane curve, and thus an elliptic curve assuming it has a rational point pA
Here it is not so easy to get new rational points, because a typical line through P meets E at two
more points, which in general are not rational. To obtain a new rational point we must use the line
joining two rational points on E, or tangent to one rational point. This is shown in Figure 5 for
the curve with (Ag, By, Co) = (1,1,91): the line through the rational points® (3,4) and (6, —5)
meets E again at (9/2, —1/2), and the tangent at (6, —5) meets E again at (—204/341,1535/341).

y=-5+¥6-X) ¥

(3,4)

Figure 5: some rational points on X3 + Y3 = 91

3 An integer solution (z, y, 2) of a homogeneous polynomial equation p(z, y, z) = 0is said to be primitive if gcd(z, y, z) =
1. Every integer solution other than (0,0, 0) can be written uniquely as (kz, ky, kz) for some primitive solution (z, y, z) and
some positive integer k.

41t is known that in characteristic zero such a curve is always isomorphic to one of the more familiar form Y2 = P3(X) for
some polynomial P3 with distinct roots. See [Sil, Chapter 111, §3] for such isomorphisms, and [Sil, Chapter III, §1] for standard
formulas for elliptic curves.

5The value Cp = 91 was chosen so that our curve has two simple rational points (3, 4) and (6, —5). This required a simple
but nontrivial solution of X3 + Y3 = X’3 + Y’3. It would have been nice to use the famous “Ramanujan taxicab™ example
Co = 1729 = 13 + 123 = 93 4 103; but this would make it hard to draw a clear and accurate Figure 5, because (1,12} is
too close to an inflection point of E and (10, 9) too close to the middle of the curve. Our example with (3, 4) and (6, —5) relies
instead on another famous identity 33 + 43 + 5% = 63, which is tantalizingly reminiscent of 32 + 42 = 52 but alas does not

generalize further: S-72% m™ # (n + 3)™ once n > 3.

61



By drawing more lines and tangents we can generate infinitely many rational points on X3 + Y3 = 91,
and it can be shown that every rational point can be obtained this way. As one might guess from the
case of (—204/341, 1535/341), the resulting primitive solutions of z° + 3® = 912z° grow rapidly, and
it turns out that the number of primitive solutions with all variables in [N, N ] is asymptotic only to
Rlog N for some R > 0. There are similar results for any elliptic curve E. By a famous theorem of
Mordell {Mo] there is a finite list of rational points on E from which all other points can be recovered by
repeatedly drawing chords and tangents through points already known or constructed. More precisely,
Mordell uses the chords-and-tangents construction to give the set £(Q) of rational points on E the
structure of an abelian group,® and proves that this group is finitely generated. It then follows from
the Néron-Tate theory of canonical heights that the number of rational points (z/z, y/ z) with each of
z,y, zin [~ N, N| is asymptotic to R(log N)#/2, where p is the rank of the abelian group E(Q) and R
is a positive constant depending on E. The curve has finitely many rational points if and only if p = 0.
It is known that this happens for the cubic Fermat curve X3 ++ Y3 = 1, whose only rational points are
the obvious (1, 0), (0, 1), and the point at infinity (X : ¥ : 1) = (1: —1:0).

Finally, for n > 3 the curve 4gX™ + ByY™ = Cj is a smooth plane curve of degree at least 4.
Mordell conjectured that (as our heuristics suggest) every such curve has only finitely many rational
points.

At any rate there is no longer a general method for constructing new points out of known ones; even
the line through two known points, or tangent to one known point, meets the curve in . — 2 more points
(allowing points with complex coordinates), and those points need not be rational once n — 2 > 1. For
example, the line X + Y = 1 through the rational points (X,Y) = (0,1) and (1,0) on the Fermat
quartic X* + Y* = 1 meets the curve again in a pair of Galois-conjugate points, each defined only
over Q(v/=7), namely (3(1+v/~7),1(1F v/=7)). More generally, Mordell conjectured that any
algebraic curve of genus at least 2 has only finitely many rational points. (The genus of a curve is
a measure of its complexity’; an irreducible plane curve of degree d has genus (d — 1)(d — 2)/2 at
most, with equality if and only if the curve is smooth; an elliptic curve has genus 1, and rationally
parametrized curves have genus 0.) Mordell’s conjecture was finally proved by Faltings, who gave two
entirely different proofs [F1, F2]. Like Mordell’s proof of the finite generation of E(Q) for an elliptic
curve E, both of Faltings’ proofs are “ineffective”; Mordell’s proof yields an upper bound on the rank,
and either of Faltings’ proofs yields an upper bound on the number of rational points, but in general
there may be no way to find a list of points and prove that it accounts for all the rational points on
the curve. While much more is known now than at the time of Mordell’s or even Faltings’ proof, the
general problems of making those theorems effective remain open.

A final note on Mordell’s and Faltings’ theorems: while they share the mystery of ineffectivity, the
proofs are of quite a different flavor. Mordell’s proof for elliptic curves can be traced back to Fermat’s
proof of the case n = 4 of FLT (showing in effect that the elliptic curves Y2 = X4 + 1 associated
to the Diophantine equations z* £ y* = 22 have rank zero), and can be regarded as the culmination of
Fermat’s work in this direction. On the other hand, Faltings’ proofs, together with the proof of FLT
by Wiles and Taylor {Wil, TW1, depend heavily on some of the most abstract and difficult results and
techniques of late twentieth-century number theory; it would take an expository paper at least as long
as this one to even give a sense of these methods to a reader not already acquainted with them.

6.3 The Darmon-Granville theorem: z? + y? = 2"

Another natural way to generalize the Fermat equation is to allow different exponents, changing =™ +
y" = 2" to xP + y¥ = z". Here p, q,r are fixed positive integers that are not necessarily equal, and
¥, y, z are integer unknowns. Solving this equation is equivalent to solving A + B = C under the

SWhile the chord-and-tangent method has been known at least since the time of Fermat, the construction of an abelian group
law from it is not obvious. See [Si1, Chapter II, §2] for the details.

7 At this point it is almost obligatory for an expository paper to cite the fact that an algebraic curve of genus g is one whose
graph over C is an orientable surface with g holes; if nothing else, that is one indication that g measures the curve's complexity.
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condition that A be a p-th power, B be a g-th power, and C be a r-th power. The Fermat equation with
exponent n is the special case p = ¢ = r = n. Applying our heuristic to general (z,y, z), we find that
if A, B,C are random integers with max(|A|, |B|, |C|) € (N/2, N] then they are respectively p-th,
g-th, and 7-th powers with probability asymptotically proportional to N ((1/P)=D+((1/a)=1)+((1/r)=1),

and thus that of the roughly N2 solutions of A + B = C in that range we might expect about

N/ -DH/O-D+(/) - 2 - N ((1/p)+(1/a)+(1/7)-1)

to yield solutions of P + y? = 2". As before, the same analysis applies (to the extent we believe it) to
the equation

Aoz? + Boy? = Co2" 6.4)
for fixed nonzero Ay, By, Cy. This leads us to introduce
1 1 1
6=6(p,q,7)=1— =~ ——— . (6.5)
p g9 T

Our expected number of solutions with max(|A|, |B|,|C|) € (N/2, N] is now roughly N9, and as
before we vary N and expect the solutions to be plentiful, sparse, or bounded accordmg as § < 0,
8 =0, or § > 0. The corresponding values of (p, g, r) are as follows.

Exercise 6.3.1. We have 6(p,q,7) < 0 if and only if one of the following conditions holds: the
smallest of p,q,7 equals 1; the two smallest of p,q,r both equal 2; or (p,q,7) is a permutation of
(2,3,3), (2,3,4), or (2,3,5). In this case, if min(p,q,7) = 2 then 1/ is a negative integer. We
have 8(p, g,) = 0 if and only if (p, ¢, 7) is a permutation of (3,3, 3), (2,4, 4), or (2,3, 6). Otherwise
5(p,q,r) > 1/42, with equality if and only if (p, g, ) is a permutation of (2, 3, 7).

The new borderline cases (2,4, 4) and (2, 3,6) again yield elliptic curves, with equations Y? =
X4+ 1and Y? = X3 £ 1 in the simplest case Ag = B = Cp = 1. It so happens that again each
of these elliptic curves has rank zero, and thus only finitely many rational points. For Y2=X4£1
the only rational points not at 1nﬁmty are obvious ones with XY = 0; this is equivalent to Fermat’s
result that there are no solutions of z* + y* = 22 in nonzero integers. For Y2 = X3 + 1 there is one
additional solution® 32 = 23 + 1, giving rise to a single set of equivalent solutions of z% + y* = 2°
in nonzero integers, namely (z,y) = (32%, ~2z%) for nonzero z € Z. For general Ay, By, Cy there
may be infinitely many such equivalence classes, but again their minimal representatives will be quite
sparse, with the number of representatives in the range max(|A|, |B|,|C]) < N growing only as a
multiple of (log{/N)#/2) (where as before p is the rank of the corresponding elliptic curve).

But for general p, g, 7 our prediction can be very wide of the mark: there are cases where § > 0 but
solutions are plentiful. For example, the equation z3 + y* = 25 has the solution

(z,y,2) = (209952, 11664, 1944) = (2°3%,2%3°,233%), (6.6)

with (A, B, C) proportional to (1,2, 3) — and indeed every integer solution of A + B = C is propor-
tional to (z3,y*, 2%) for some (and thus for infinitely many) integer triples (z,y, z). More generally
we have:

Exercise 6.3.2. Suppose the natural numbers p, g, 7 are pairwise relatively prime, and Ag, By, Cp are
any nonzero integers. Then every integer solution of A+ B = C is proportional to (Agz?, Boy?, Coz")
for some (and thus for infinitely many) integer triples (z,y, z), and given the initial A, B,C (not all
zero) the number of such (x,y, z) with max(|Aoz?|,|Bey?l, |Co2"|) < N is asymptotically propor-
tional to N'/(P9™) as N — oo. Moreover there are triples (p, ¢,7) of relatively prime numbers for
which § is arbitrarily close to 1.

8The elliptic curve Y2 = X3 + 1 still has rank zero, but with six rational points: one at infinity, one with X = —1, and two
each with X = 0 and X = 2. The reader can check that no further points are obtained by intersecting the curve with the tangent
line at any of these points, or the line through any two of them. For instance, (X,Y’) = (2, 3) is the third point of intersection
of Y2 = X3 4 1 with the line Y = X + 1 through the obvious points (—1,0) and (0, 1).
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The exponent 1/(pqr), though usually small, is positive for all p, g, 7; hence if p, g, r are pairwise
relatively prime our equation Agz? + Byy? = Coz" has “plentiful solutions” by our standards, even
when the value of ¢ is almost as positive as it can be. This seems to utterly demolish our heuristic,
which suggests that when 6 > 0 there should be only finitely many solutions, and moreover that this
tendency should be more pronounced the larger & gets. But even in favorable cases like the “twisted
Fermat curves” Apz™ + Byy"™ = Copz™ our heuristic holds only for primitive solutions, those with
z,y, z pairwise relatively prime. Indeed we should not expect the heuristic to hold when z and y have
a large common factor, say d, because then A = Agz™ and B = Boy™ are both multiples of d*,
which makes A + B much likelier to be of the form Cyz" than a random number of the same size.
Our construction of plentiful solutions such as (6.6) likewise exploits large common factors. We thus
restrict attention to solutions with (A, B, C) = (AozP, Byy9, Cyz") relatively prime.%'° In this case
our heuristic agrees precisely with the remarkable theorem of Darmon and Granville (1995):

Theorem 1. [DG]J: Let p,q,r be natural numbers such that 6(p,q,7) > 0, and let Ay, By, Cy be
any nonzero integers. Then there are finitely many triples (z,y, z) of integers with ged(z, y, z) =1
satisfying the equation (6.4).

As with FLT and Faltings’ theorem, the proof is alas much too advanced for us to be able to even
outline the main ingredients here — though we do note that one key step is an application of Faltings’
theorem itself!

Exercise 6.3.3. The Darmon-Granville theorem may seem a bit stronger than what we suggested, be-
cause (A4, B, C) might still have a common factor coming from the coefficients Ay, By, Cy. But given
those coefficients there are only finitely many possible values of d := ged(A, B, C). Use this to show
that there are also only finitely many equations Azl + Byl = C, 2] whose integer solutions satis-
fying ged(A, 27, Byy{, C, 2]) = 1 account for all solutions of (6.4) with ged(z, y, z) = 1. Therefore
if we knew Darmon-Granville only under the more restrictive hypothesis that Agz?, Byy?, Cyz" be
relatively prime, we could deduce the result in the form quoted above.

Seeing that the Darmon-Granville theorem for equation (6.4) generalizes Faltings’ finiteness result
for the case p = g = r of twisted Fermat curves, can we also generalize FLT to the special case Ay =
By = Cy = 10f (6.4), finding all solutions of z? + y¢ = 2™ with 8(p,q,7) > 0 and ged(z, y, z) = 1?
Our heuristic analysis suggests that there should be only finitely many such triples (z?, y9, z7), but we
have no reason to expect that there should be none at all — and we would not be surprised if some of
them are quite large, especially for those choices of (p, g, ) that make & positive but small. Note that
the Darmon-Granville theorem gives finiteness for any particular choice of (p, ¢, 7) but (like Faltings’
theorem vis-a-vis FLT) leaves open the possibility of infinitely many solutions with (p, g, r) varying as
well.

The full answer is still beyond reach, so we report on the known partial results and conjectures.
The simplest example is the identity 1 + 8 = 9 already noted in connection with (pg,7) = (2,3,6);
it yields a solution 1" + 23 = 32 for all r, satisfying §(2,3,) > 0 for all 7 > 6. Computer searches
reveal 9 more solutions: 13% + 7% = 2° with §(2,3,9) = 1/18; two solutions

28 +72 =34 3%411%=122? (6.7)
with {p,¢,7} = {2,4,5} and § = 1/20; two solutions

33°% + 1549034% = 156133, 43% + 962223 = 300429072 (6.8)

9We need not specify pairwise relatively prime, because the relation A + B = C forces any factor of two of A, B,Cto
divide the third.
10The failure of our naive heuristic when A, B, C can have large common factors is related to the failure we noted earlier for
a singular cubic curve. Here the surface AoxP 4 Boy? = Cpz" is highly singular at the origin, and a solution with A, B, C all
divisible by a high power of p yields a point (i, y, z) on that surface that is close to that singularity in the p-adic metric.
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with {p, q,7} = {2, 3,8} and § = 1/24; and four solutions

27+ 173 =71%, 177 4+ 762713 = 210639282,

14147 + 22134507 = 657, 9262 + 15312283 = 113 (6.9)

with {p, q,7} = {2,3, 7} and the minimal & value of 1/42. These computations are reported in [DG],
with the discovery of the five large solutions credited to Beukers and Zagier. This list is conjectured to
be complete, based both on further computer searches that revealed no other solutions and on various
partial results that prove special cases of the conjecture. In particular it would follow from this con-
jecture (plus FLT for n = 3) that zP + y? = 2" has no solution in integers p,q,7 > 3 and relatively
prime integers z, y, 2; this is the Tijdeman-Zagier conjecture, for whose solution Andrew Beal offers
a $50,000 prize [Mau].

The most recent of the partial results in the direction of the conjecture that there are no further
solutions with d(p, ¢, ) > 0 is [PSS], a tour de force proving that there are no further solutions for
{p,q,7} = {2,3,7}. This paper also gives an extensive list (Table I at the end of the Introduction) of
triples (p, q,7) for which the corresponding result had been proved earlier, including the triples with
{p,q,7} = {2,4,5} and {2, 3,8} seen in the other known solutions (6.7, 6.8). Another special case
is Catalan’s conjecture that 8 and 9 are the only consecutive powers of integers, recently proved by
Mihiilescu [Mil; this shows that there are no other solutions with z = 1. The proofs of these partial
results call on a vast range of number-theoretical techniques, including classical methods of elementary,
algebraic, and analytic number theory, Galois representations and modularity as in the proof of FLT,
and algebraic geometry of curves. This huge theoretical arsenal is complemented by sophisticated
computational and algorithmic tools that are often essential for carrying out algebraic manipulations or
for completing a proof that has been reduced to a finite but nontrivial calculation.

What about §(p, q,r) < 0, when we expect that the number of relatively prime solutions of (6.4)
with max(|A|, |B|,|C]) < N can grow as a multiple of N~ as N — oo? We easily dispose of the case
where at least one of p, ¢, 7 is 1, when we can simply solve (6.4) for the corresponding variable z, y,
or z in terms of the other two. So we assume that each of p, g, r is at least 2. In Exercise 6.3.1, we saw
that then —& = 1/d for some integer d > 0. There are choices of the coefficients Ay, By, Co for which
(6.4) has no solutions at all — we already saw the examples z2 + y* + 2% = 0 and 2% + y? = 32°
with p = ¢ = r = 2. But if we assume that there is at least one solution of (6.4) in relatively prime
integers then Beukers showed [Beu} that the N 1/4 guess is correct. Moreover, for each Ay, By, Cy
there are finitely many polynomial identities in degree 2d that together account for all the relatively
prime solutions, in the same way that the single identity (6.2) accounts for all Pythagorean triples. (In
fact the Pythagorean parametrization illustrates the special case Ag = By = Co =1, p=q=r =2
of Beukers’ result; note that here § = —1/2 and both sides of the identity are polynomials of degree 4.)

Unlike the Faltings and Darmon-Granville finiteness results, Beukers’ is effective: at least in prin-
ciple one can find all the parametrizations by carrying out a computation whose length is bounded
by an explicit function of p, q,r, Ag, By, Co. Doing this in practice still requires some work. For the
three exceptional cases where only one of p, ¢, 7 equals 2, this work was recently completed by Ed-
wards [Ed). In particular he gave for the first time the complete solution for {p,q,7} = {2,3,5} in the
case Ag = By = Co = 1. There are 27 inequivalent identities, of which the simplest (which Beukers
had already obtained) is X (t)? + Y (¢)® = Z(¢) where

oy
|

= (t1° 4+ 12%) (£20 — 1225224" — 12410006 £'° + 126522¢° + 12%),
Y(t) = —t20—12222841% — 124494410 4 12622845 — 128, (6.10)
Z(t) = 12(—t"1 + 1221145 + 12%¢).

For any m,n € Z we recover an integer solution of z2 + y3 = 2 by taking z = n3X(m/n),
y =n*Y (m/n), and z = n'?Z(m/n), and these z, y, 2 are relatively prime if and only if

ged(m,6n) =1 and m # 2n mod 5. 6.11)
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For example, m = n = 1 yields 36934790165857% + 2405462393 = 267828°. To make it such
that max (|22}, 33|, |25|) less than NN it is enough to make both |m| and |n| less than some multiple
of N'/50; the number of such (m,n) satisfying (6.11) is asymptotically proportional to N'1/30 —
N—3235) 35 expected.

We conclude this section with another scenic detour: a view of two surprisingly pertinent alternative
descriptions of the triples (p, g, ) of integers greater than 1 for which 8(p, ¢, ) < 0. First, p, ¢, r satisfy
this condition if and only if there exists a spherical triangle A with angles 7/p, /g, 7/ on the unit
sphere ¥, in which case the triangle has area 7 - (—4). Second, we have §(p, q,7) < 0 if and only if the
group ' =T, , . with the presentation

Lpgri={a,8,7|aP =8"=7"=apy=1) (6.12)

is finite, in which case it has 2d elements, where d = —1/§ as before. The first equivalence follows
from the well-known fact that the sum of the angles of A exceeds w by an amount equal to the area
of A. In this case we can take the generators o, 3, of I to be rotations about the vertices of A
through angles 27 /p, 27 /q, 27 /r, or equivalently the products of pairs of reflections in the edges of A.
If we identify ¥ with the Riemann sphere CPP! and let ¢ be a complex coordinate on X then I' becomes a
finite group of automorphisms of CP!, which is to say a finite group of fractional linear transformations
t — (at +b)/(a’t +b'). Then for each of our identities X (¢)? + Y (t)? = Z(¢)" in degree 2d the ratios
XP/Z7,Y/Z", etc. are invariant under T fora suitable choice of spherical triangle A! Moreover, by
Galois theory any such ratio T actually generates the field of T-invariant rational functions of ¢; that
is, C(T') = (C(¢))". For example, when p = g = r = 2 our Pythagorean parametrization (6.2) yields
functions such as (t* — 1)2/(2t)2 and (¢2 + 1)2/(2¢)? invariant under the 4-element group isomorphic
withT'y 5 2 and generated by ¢t <> —tand ¢t < 1/t. For (p, q,7) = (2,3, 5), we have T’ & A5, the group
of rotational symmetries of a regular icosahedron inscribed in ¥, and the roots of the polynomials'!
X, Y, Z of (6.10) are precisely the 30 edge centers, 20 face centers, and 12 vertices of that icosahedron!

When 6(p,q,7) = 0 or §(p,q,7) > O the triangle A is respectively planar or hyperbolic rather
than spherical, and the group I' = I, generated by pairs of reflections in its edges is no longer
finite. But T is still intimately connected with 2P + y? = 2" via automorphisms of Riemann surfaces.
When 6(p, q,7) = 0, we can regard T as a group of affine linear transformations ¢ — at + b of C; its
finite-index subgroup of translations (with a = 1) is then a lattice, and the quotient of C by this lattice
is the elliptic curve we obtained from x? + y? = 2". When é = 6(p, ¢, r) is positive, A is a hyperbolic
triangle of area 7d and T is a discrete group of isometries of the hyperbolic plane H; the quotient /T
can be identified with CP! via a I'-invariant meromorphic function on H analogous to the functions 7"
of the previous paragraph, and quotients of by subgroups of finite index in T yield finite extensions
of C(T) that are used in the proof of the Darmon-Granville theorem and in the solution of some special
cases such as 2% + ¢3 = 27,

6.4 The ABC conjecture: A + B =C

Masser and Oesterlé noted that a solution of the Fermat equation, or of a natural generalization such
as the equation (6.4) addressed by Darmon and Granville, yields relatively prime numbers A, B,C
(such as =™, y™, 2™ for a primitive Fermat solution) such that A + B = C and each of A, B, C has
many repeated prime factors. This inspired them to guess a vastly more general constraint on repeated
prime factors in A, B, A + B for coprime integers A, B, and to formulate a precise conjecture on
the nature of this constraint, now known as the ABC conjecture. This conjecture is stated in terms
of an arithmetic function called (for reasons whose explanation would take us too far afield here) the
“conductor”, defined as follows:

MNote that X, Y, Z are regarded as homogeneous polynomials of degrees 30, 20, and 12 respectively, so we count t = oo
among the roots of Z. The other roots of Z are 0 and the ten values of g¢ where ¢ is (1 + v/5)/2 (the golden ratio or its
algebraic conjugate) and g is one of the five fifth roots of 122 in C.
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Definition 2. The conductor N (D) of a nonzero integer D is the product of the (positive) primes
dividing D, counted without multiplicity. Equivalently, N (D) is the largest squarefree factor of .

Example 6.4.1. N(D;D;) < N(D;)N(D,) forall nonzero integers D1, D3, with equality if and only
if they are relatively prime; N(D™) = N(D) for all nonzero integers D and n > 1. The following
brief table gives N (D) for 24 < D < 32:

D |24 25 26 27 28 29 30 31 32
N{D)|6 5 26 3 14 29 30 31 2

The size of the integer | D|/N (D) should be regarded a measure of how far D is from being squarefree,
that is, of how rich D is in repeated prime factors.

Conjecture 3. (Masser-Oesterlé [Oe]): For every real € > O there exists cc > 0 such that
N(ABC) > c.C'"¢ (6.13)

holds for all relatively prime natural numbers A, B, C such that A+ B = C; equivalently, for every
real € > 0 there exists c. > 0 such that

N(ABC) > ¢, max(|A|,|B|,|C])* ¢ (6.14)
holds for all relatively prime integers A, B, C such that £tA+ B+ C = 0.

The equivalence is elementary, and the more symmetrical form £ A + B £+ C = 0 will let us avoid
repeating some arguments twice or thrice according to the signs of 4, B, C.

In the following exercises, we detail how the ABC conjecture implies “asymptotic FLT” (that is,
FLT for sufficiently large n) as well as its generalizations by Darmon-Granville and Tijdeman-Zagier,
and then give an equivalent formulation in terms of the “ABC exponent”, and explain why the € in
(6.13,6.14) cannot be removed.

Exercise 6.4.1. The ABC conjecture applied to (A, B, C) = (Agx?, Boy?, Cypz") implies the Darmon-
Granville theorem; moreover, for any p, g, T such that § = §(p,q,7) > 0 and any positive ¢ < 4, the
inequality (6.13) with an explicit value of ¢, yields an explicit upper bound on relatively prime integers
z,y, z such that AgzP + Boy? = Cp2".

Exercise 6.4.2. The ABC conjecture implies the Tijdeman-Zagier conjecture with at most finitely many
exceptions; moreover, for any positive ¢ < 1/12 the inequality (6.13) with an explicit value of c. yields
an explicit upper bound on P, y7, 2" in any counterexample to the conjecture.!?

Exercise 6.4.3. The ABC conjecture for any ¢ < 1 implies that Fermat’s Last Theorem holds for ail
but finitely many exponents n. Again, an explicit value of c. yields an explicit g such that FLT holds
for all n > ng.

Exercise 6.4.4. The ABC conjecture for any ¢ < 1 implies that any finitely generated multiplicative
subgroup G of Q* contains only finitely many solutions (s, ') of s+s’ = 1. [Choose generators for G,
and let S be the set of primes that divide the numerator or denominator of at least one generator; then
5+ s’ = lyields A + B = C with N(ABC) | [[,e5 P

Remark. For this problem, as with the first exercise in this list, the finitude of solutions is already a
theorem, without assuming ABC or any other unproved conjecture. Better yet, explicit upper bounds
have been given on C as a function of N (ABC') — whereas no such bound is known for the Darmon-
Granville theorem without an ABC hypothesis. Still, the proved bounds are much worse than what
would follow from (6.13); see below.

12The bound 1/12 can be raised to 1/6 because Bruin showed [Br] that there are no solutions of z3+y% = z4 orz3+y3 = 2°
in relatively prime integers.
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Exercise 6.4.5. For relatively prime natural numbers A, B, C such that A + B = C, define the ABC
exponent 0( A, B, C) by
0(A, B,C) := (log C)/(log N(ABC))

(so that C = N(ABC)?4.B:0)); for example 6(1,8,9) = log 9/ log 6 = 1.226 +. Set

© := limsup6(4, B, C),
(A4.B,C)

the limsup running over all triples (A4, B, A + B) of natural numbers. Then the ABC conjecture is
equivalent to © < 1. In fact the ABC conjecture is equivalent to © = 1, because it is elementary that
© > 1 (for instance we may take (A4, B) = (1,2" — 1) withr — o00).

Remark. 1f it is true that limsup #(A, B, C) = 1 then the convergence must be very slow: it is known
that there are infinitely many examples of 6(A, B, C') > 1+¢/+/Iog C for some universal constant ¢ >
0; and it is expected, based on probabilistic heuristics such as applied earlier to Agz? +- Boy? = Cyz",
that in fact 6(A, B, C) — 1 > (log C)~? holds infinitely often for all ¢ > 1/3, but only finitely often
for each 4 < 1/3. In particular, the ABC conjecture is consistent with those heuristics. The largest
numerical value known for (4, B, C) is 1.6299+, for 2 + 31109 = 23° (found by Eric Reyssat in
1987). See [Ni] for other large 6(4, B, C).

Exercise 6.4.6. The inequality (6.13) cannot hold for ¢ = 0 and any positive value of cg. (One way to
prove this is to find for each & > 0 a natural number r such that 3%|2" — 1.)

The ABC conjecture, like FLT, is formulated over Z but has an equivalent statement over Q obtained
by considering ratios of the variables. If A + B = C, consider F = A/C,s01—F = B/C. Both
fractions are in lowest terms because A, B, C are assumed relatively prime. The conductor V(A) is
the product of the primes p such that F = 0 mod p, and likewise N (B) is the product of the primes p
such that F' = 1 mod p. As for N(C), that is the product of primes p for which F mod p cannot be
found in Z/pZ because the denominator C' vanishes mod p. Since in this case p1 A, we say that these
are the primes such that “F = oo mod p”. Hence N(ABC), the LHS of the ABC conjecture (6.13),
is the product of primes p such that F mod p is one of 0, 1, 00. The RHS is ¢.C'~¢, in which C is
simply the denominator of F. This assumes that A, B, C' are positive, that is, that 0 < F < 1; in
the general case we replaced C' by max(|Al, | B[, |C|) (see (6.14)), so now we replace the denominator
of I by the height A(F). By definition, the height of a rational number m /n with ged(m,n) = lis
max(|m|, |n|). This need not exactly equal max(]A[, |B|,|C|), but is within a factor of 2, which can
be accommodated by changing the constant ¢, of (6.14). Thus the ABC conjecture is equivalent to the
assertion that for every € > 0 there exists c. > 0 such that, forall F € Q, the product of the primes at
which F reduces to 0, 1, or oo is at least c.h(F)! ¢,

Geometrically, the reduction of FLT to ABC in Exercise 6.4.3 amounts to applying the ABC con-
Jecture to the value of the rational function F = (z/z)™ = X" on the n-th Fermat curve. This succeeds
because /' and 1 — F have multiple poles and zeros (some defined only over an algebraic closure Q)
— that is, the preimages of 0, 1, oc under F have large multiplicities, which makes the total number of
preimages counted without multiplicity small compared to the degree of F as a rational function on the
curve. It turns out that here the degree is n?, and the number of preimages is 3n, which is less than n?
once n > 3, and indeed less than én? once n > 3/5. When we try to generalize this argument to ra-
tional points on a general algebraic curve X, we find that it is rare for there to be a rational function F
on X" whose degree exceeds the size of ' ({0, 1, 00}) by a large factor, so we cannot usually expect to
deduce Mordell’s conjecture (finiteness of rational points) for X from an ABC inequality with € near 1.
But Belyi [Bel] shows how to construct a function F satisfying deg(F) > # (F~1({0,1,00})) when-
ever X' is a curve of genus at least 2 defined by an equation with coefficients in Q, and then Mordell’s
conjecture follows from ABC with ¢ sufficiently small [El1]. Recall that Faltings already proved this
conjecture twice without any unproved hypothesis, but the proofs are ineffective; the argument in [El1]
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shows that the ABC conjecture with effective constants ¢, would yield a completely effective finiteness
result for rational points on X'

Many other consequences of the ABC conjecture are known, ranging from elementary special cases
(there are only finitely many integers N such as N = 4,5, 7 for which N! + 1 is a perfect square) to
applications that give unexpected connections with other problems in number theory. A striking ex-
ample is Silverman’s application to Wieferich primes, that is, primes p for which 2°=! = 1 mod p?,
such as 1093 and 3511. (Note that the congruence always holds mod p by Fermat’s little theorem. In
1909 Wieferich proved [Wie] that a FLT counterexample z? + y? = 2P with p { xyz for some prime p
would imply 2°~! = 1 mod p?.) Such primes are expected to be very rare; indeed none is known other
than 1093 and 3511, and any further such prime must exceed 1.25 - 10! according to computations re-
ported by Richard McIntosh (http://www.loria.fr/~zimmerma/records/Wieferich.
status). But it is not even known that the set of non-Wieferich primes is infinite! Silverman [Si2]
proves the infinitude of non-Wieferich primes under the hypothesis of the ABC conjecture, and shows
further that this conjecture implies that for every integer o # 0, 1 there exist constants ¢, T, such
that for all > z, there are at least ¢, log 24 primes p < z satisfying o?~! # 1 mod p?.

Unfortunately a proof of the ABC conjecture still seems a very distant prospect; it is even much
too hard to prove the existence of any e < 1 for which the inequality (6.13) holds for some ¢, > 0. To
show just how far we are, consider the situation suggested by Exercise 6.4.4: we know N = N(ABC),
and want all possible (4, B, C). Let S be the set of primes dividing N. Then the inequality (6.13) for
any € < 1 gives an upper bound on solutions of A + B = C in relatively prime integers all of whose
prime factors are contained in .S. (This is often called the “S-unit equation”, because it is equivalent
to solving a + b = 1 in rational numbers (a,b) = (A/C, B/C) that are units in the ring Z[1/N]
obtained from Z by inverting all the primes in S.) In particular, there should be only a finite number
of solutions. This result is known [Lal], but already far from trivial. It was not much harder to give
an explicit bound on the number of solutions [LM], and by now there are bounds depending only on
the size of S, as in [Ev]. But that still gives no control over the size of the largest solution, which is
what the ABC conjecture addresses. Stewart and Tijdeman gave such a bound in [ST], and the bound
was recently improved by Stewart and Yu [SY]. But even the best bounds remain exponential: the
logarithm of C is only known to be bounded by a multiple of N''/3(log(N))®. Even these results can
be useful; for instance the Stewart-Tijdeman bound log C = O(N1%) is already enough to compute in
practice the full solution of the S-unit equation when S is not too large (see for instance [dW]). But
the known results are still very weak compared with the inequalities that the ABC conjecture predicts
and that we need for applications such as the Tijdeman-Zagier conjecture and explicit upper bounds in
the Darmon-Granville theorem.

6.5 Mason’s theorem: A(t) + B(t) = C(t)

A curious feature of the ABC conjecture is that not only does it seem very hard to prove but it is not at
all obvious how one might try to disprove the conjecture. If FLT were false, a single counterexample
would expose the falsity; likewise for the Catalan and Tijdeman-Zagier conjectures, or the Riemann
hypothesis and its variants. But there can be no single counterexample for the ABC conjecture, even
for a specific value of ¢, because the inequality (6.13) can accommodate any given triple (4, B,C)
by simply decreasing c.. Likewise for the formulation of the conjecture in terms of ABC exponents
6(A, B, C): a single example may break the record for the maximal 6, but has no bearing on © which is
defined as a lim sup of (A, B, C). Proving that the conjecture is false would require the existence of an
infinite family of (A, B, C)’s whose ABC exponents approach a limit greater than 1 (or approach oo),
just as we had to construct an infinite family such as {(1,2" — 1,27)}22, to prove © > 1.

The most natural families to try arise from identities A{t) + B(t) = C(t) relating polynomials
A,B,C € Z[t], not all constant. Recall that we already used such polynomials to construct infinitely
many Pythagorean triples, or relatively prime solutions of z? + y3 = 2% in effect we solved these
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Diophantine equations in Z[t], then specialized to ¢ € Q and multiplied by powers of the denominator
of t to recover integer solutions. Similarly, from polynomials A(t), B(t), C(t) satisfying A + B = C for
which D := max(deg(A), deg(B), deg(C)) is positive we get a family of integer solutions A, B, C' as
follows: for any pair (m, n) of relatively prime integers we take

(4, B,C) = nP(A(m/n),B(m/n), C(m/n)). (6.15)

Thus A, B, C' are homogeneous polynomials of degree D in (m,n). If A, B, C have repeated factors
then so do A, B, C, and with enough repeated factors we can hope to get a sequence with

limsup8(A4, B,C) > 1.

We must assume that A(t), B(t), C(t) are relatively prime as polynomials, else A, B, C' will have

a common factor for most choices of (m,n). This also means that D is the degree of the quotient

F = A/C € Q(t) as a rational function of ¢. Conversely, if the polynomials have no common factors

then ged(A, B) is bounded above,'? so dividing each of our triples (4, B, C) of (6.15) by its greatest

common divisor yields relatively prime solutions of A + B = C with asymptotically the same ABC
exponent as the ratio

logmax(|Al,|B|,|C]) _ logmax(|Al,|B|,|C])

log N(ABC) ~ log(N(A)N(B)N(C))

that we would compute if A, B, C were relatively prime.
The numerator of this ratio is easy to estimate: it is D log h(m,n) + e, where

(6.16)

D = max(deg(A), deg(B), deg(C))

as above, h(m, n) is the height | max(m, n)| of (m, n) (or of the rational number m /n as before), and
e is an error of bounded absolute value. What of the denominator? Let us try some examples using
polynomial identities that we have already encountered. If

(A.B,C) = (£ — 1%, (202, (£ + 1)?)

as in (6.2), then D = 4 and we get (4, B,C) = ((m? — n?)2, (2mn)?, (m? + n?)?) (the squares of
the entries of the Pythagorean triple (6.2)), and then N (ABC) is a factor of (m? — n?)2mn(m? + n?).
Hence N(ABC) is bounded above by a multiple of h(m, n)®. We can save two factors of h(m,n)
in various ways, for instance by making (m,n) = (1,27) as in Exercise 6.4.5; but that still leaves
both numerator and denominator of (6.16) asymptotic to 4 log h(m,n), giving the same lower bound
of 1 on © that we obtained in that Exercise. Might we do better with the more complicated example
(A, B,C) = (X ()%, Y (t)3, Z(t)®), where X, Y, Z are the polynomials of (6.10)? Now D = 60 and
A, B, C are respectively a square, a cube, and a fifth power, so N (ABC) is bounded by a multiple of
h(m,n)+20+12 — p(m, )62, Again we can save a factor h(m, n)? thanks to the factor mn of C, but
that still brings our bound on N(ABC) only down to a multiple of h(m,n)8° = h(m, n)P, and again
we fail to improve on © > 1.

In general, suppose A factors as Ao [, x* where Ay is a scalar and the x; are distinct irreducible
polynomials. Let z; = n*6*ix;(m/n). Then A = nPA(m/n) = Agn®> [[, z%, where e := D —
2>_; ei deg(x;) is the multiplicity of n as a factor of the homogeneous polynomial n? A(m/n) (which
may also be regarded as the “order of vanishing at ¢ = 00™ of A when A is regarded as a polynomial
of degree D). Hence N(A) is bounded by a constant miltiple of II; z: or n]], |z;| according as
€oc = 0 or ex > 0. Each |z;| is in turn bounded by a constant multiple of (h(m,n))3%8% and of
course [n| < h(m, n). It follows that N(A) < h(m, n)"»(4) where v, (A) = Vpoo(A) + 32, deg x;

3By the Euclidean algorithm for polynomials there exist X, Y € Z[t] such that AX — BY = d for some nonzero d € Z,
and then ged(A, B) | nPd forall m,n € Z. Repeating this argument with A, B replaced by the relatively prime polynomials
tPA(1/t),tP B(1/t) yields a nonzero integer d’ such that ged(A4, B) | mPd’. Thus if ged(m,n) = 1 then ged(A, B) | dd'.
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and v (A) = 0 or 1 according as e, = 0 or e,, > 0. More succinctly, v, (A) is the number
of solutions of F(t) = 0 in CP', counted without multiplicity (note in particular that e, > 0 if and
only if F(oco) = 0). We define v, (B) and v (C) likewise, and observe that they are the numbers
of solutions in CP! of F(t) = 1 and F(t) = oco. Putting these together we find that N(A4, B,C)
is bounded by a constant multiple of h(m,n)" where v = vp(A) + vp(B) + vp(C) is the size of
F~1({0,1,00}). Moreover, if at least two points in F~1({0, 1, co}) are rational then we can save an
extra factor of h(m,n)? as we did before; in fact we expect to save this factor in any case, because
there are about H? choices of (m,n) with h(m,n) € (H/2, H], and it is not too hard to show that in
fact this h(m,n)? saving is available for all nonconstant rational functions F. In other words, we can
make the denominator of (6.16) no larger than (v — 2) log h(m, n) + €', where €’ is another bounded
error.

Combining our estimates and letting h(m, n) — oo, we find that the polynomial identity A+ B = C
will yield a disproof the ABC conjecture if ¥ < D + 2. We have already given several examples of
v = D + 2, and there are many others, some of which are very easy to construct (iry (A,B,C) =
(1,tP — 1,tP) for instance). Might we attain v < D + 2 if we are just a little more clever, or look
harder? This is where Mason’s theorem enters:

Theorem 4. [Mas]: If F € C(t) is a rational function of degree D > 0 on CP! then F~1({0,1, 00})
has cardinality at least D + 2.

This ruins our hope for an easy refutation of the ABC conjecture. Viewed more positively, it is
evidence for the truth of the conjecture, and indeed can be viewed as an “ABC theorem” for polynomials
or rational functions. To make the comparison explicit, we again take logarithms in the conjectured
inequality (6.13) to write it as log N (ABC) > (1 —¢) log C' —log(1/c,). We saw that for polynomials
v and D play the roles of log N(ABC) and log C respectively. Thus Mason’s theorem is an even
stronger statement, because the troublesome terms —e log C' and — log(1/c.) in the lower bound for
log N(ABC) have been replaced by the helpful +2 in the lower bound on v.

Moreover, while the ABC conjecture seems intractable at present, Mason’s theorem can be proved
easily. There are several related routes, all exploiting the idea of detecting multiple roots of a polyno-
mial or rational function using its derivative — a tool not available for integers or rational numbers.
The route we choose uses the logarithmic derivative, for which it will be convenient to assume that oo
is not a preimage of 0, 1, or co. We ensure this by applying to ¢ a fractional linear transformation that
moves all the preimages of {0, 1, co} away from infinity.

Proof. Fix a number ¢y not in F~1({0, 1, 00}), and let F(t) = F(to + (1/t)), a rational function also
of degree D and with the same number of preimages of {0, 1,00} as F, none of which are at infinity.
Let vy, 1y, ¥, be the number of preimages of 0, 1, co respectively. Let A be the logarithmic derivative
F//F,. Then A is not identically zero because F; is nonconstant, and A has a simple pole (that is, has
a denominator with a simple root) at each preimage of 0 or oo, regardless of its multiplicity. Hence
the denominator of A has degree vy, + v,. Any root of F{ — 1 of multiplicity e is a root of A of
multiplicity e — 1. Summing over the roots, we find the the numerator of A has at least D — v, roots
counted with multiplicity, and therefore has degree at least D — v,. But the difference between the
denominator’s and numerator’s degrees is the order of vanishing of A at infinity, which is at least 2 (to
see this, expand F, at infinity as 35 ) a;t =% = ap + a;t™! + agt™2 + azt ™3 4 -- - with ag # 0, and
calculate F) = —a,t2 — 2a,t ™3 —3a5t™* —---). Hence D —v; <y + v, — 2, which is equivalent
to the desired inequality v, + v, + v, > D+ 2. O

Since the numerator of the derivative or the logarithmic derivative of A/C is (up to sign) the Wron-
skian
A C
AT
the proof can also be formulated in terms of Wronskians. The key fact that F and F — 1 have the same
derivative then corresponds to the identity W5 (A, C) = W,(A — C, C), which holds because W5 (-, -) is

Wy(A,C) = det — AC' — A'C,
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bilinear and alternating, and forces W3(A, C) to vanish at multiple zeros of B. Also equivalent, though
not as transparently so, is the proof obtained by applying the Riemann-Hurwitz formula to F. This
approach explains the “4-2” in Mason’s inequality as the Euler characteristic of CP!, and generalizes
to rational functions F of degree D > 0 on other compact Riemann surfaces, for which Mason finds
the inequality # (F~'({0,1,00})) > D+ x = D + 2 — 2g, where g is the genus and x the Euler
characteristic of the surface. This is why the rational functions F constructed by Belyi cannot satisfy
deg(F) > # (F~'({0,1,00})) unless g > 2. For an elliptic curve we have g = 1, so deg(F) =
#F~1({0,1,00}) is possible, and if the elliptic curve has positive rank then its rational points yield
another kind of infinite family of (4, B, C) triples with limsup §(4, B, C) > 1 (such as (23, 33, 9123)
for primitive solutions of z° + y* = 912%); but the points are too sparse for us to prove that the limsup
strictly exceeds 1, and again we come just short of a disproof of the ABC conjecture.

6.6 A Putnam problem: minding our P’s and Q’s
The last problem of the 1956 William Lowell Putnam Mathematical Competition asks [GGK, p.47]:

The polynomials P(z) and Q(z) with complex coefficients have the same set of numbers
for their zeros but possibly different multiplicities. The same is true of the polynomials
P(z) + 1 and Q(z) + 1. Prove that P(z) = Q(z).

As noted in [GGK, p.431], it must be assumed that at least one of P and Q is not constant, else the
claim s false. We thus assume max(deg(P), deg(Q)) > 0, and by symmetry may take m = deg(P) >
deg(Q) = n. The claim is clearly true if P has distinct roots, because then Q = cP for some c € C,
and if A is any root of P+ 1then0 = Q(\) +1 = cP(\)+1 = —c+ 1 implies ¢ = 1. Likewise
if P+ 1 has distinct roots. We must then contend with the case that P and P + 1 both have multiple
roots — and we know already that the derivative P’ = (P + 1)’ detects multiple roots of either P or
P + 1. We proceed as in [GGK, p.431-432]. Let A1,..., A be the distinct roots of P (and thus also
of @), and p, ..., us the distinct roots of P + 1 (and thus also of Q + 1). By an argument we can now
recognize as the special case of Mason’s theorem in which F is a polynomial — and which would fail
if m = 0 were allowed — we have m — 1 = deg(P') > 2m —r — s, whence r + s > m + 1. But each
root of P or P + 1 is also a root of P — @, a polynomial of degree at most m. Therefore P — Q is the
zero polynomial, and we are done.

The corresponding statement for integers instead of polynomials would be that a positive integer n
is determined uniquely by the sets (without the multiplicities) of prime factors of n and of n + 1, that
is, by the conductors N (n) and N (n + 1). We might expect that this should be false, because the proof
in the polynomial case hinges on an inequality stronger than can be true for integers. Indeed there are
infinitely many counterexamples, the smallest with natural numbers being » = 2and n’ = 8 (this is yet
another appearance of 1 + 8 = 9), which begins the infinite family {n, n'} = {2m - 2,2m(2™ — 2)}
(m = 2,3,4,...). Still, such examples seem quite rare; an exhaustive search finds that the only case
with 0 < n,n < 10® not of the form {2™ — 2, 2m(2m — 2)}is {75, 1215} (with N(75) = N(1215) =
15and N(76) = N(1216) = 38). When we allow also negative integers, the identity N(—n) = N(n)
gives an involution {n,n'} <> {~1 —n,—1 — n'} on the set of solutions. Modulo this involution, we
find one more infinite family {2™ + 1, —(2™ + 1)2} (m = 1,2,3,...), and one more sporadic pair in
(—10%,108), namely {35, —4375}. The infinite families intersect at {2, —4,8} and {-3, 3, ~9}, which
may be the only three-element subsets of Z mapped to a single point under n —s (N(n), N(n+1)).

Might we generalize the Putnam problem to rational functions F'? Since a polynomial is just a
rational function with F~!({co}) = {00}, we might guess that more generally if F and G are non-
constant rational functions with complex coefficients that, when considered as maps from the Riemann
sphere CP! to itself, satisfy F~'({w}) = G~!({w}) for each of w = 0,1, 00, then F = G. (In the
Putnam problem, F"and G would be the polynomials P + 1 and Q + 1.) Alas this natural guess is false.
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An explicit counterexample is'*

(z—1)3(z +3)
16z ’

(z = 1)(z + 3)?

Fz) = 1623

G(z) = h(-3/2) =
with F(z) — 1 = (z = 3)(z + 1)3/16z and G(z) — 1 = (z — 3)3(z + 1)/162%. Here F and G are
rational functions of degree 4. Is this the smallest possible? It is probably much harder to completely
describe all counterexamples, or even to decide whether there any with deg(F') # deg(G).

6.7 Further problems and results

In number theory most things that can be done in Q or Z generalize, with some additional effort, to
number fields K (finite-degree field extensions of Q) and their rings O of algebraic integers. This is
true of the ABC conjecture, which can be naturally formulated over any K or Ok, and has much the
same consequences there as we saw over Q or Z. Much of the extra effort in making this generalization
arises because Ok need not have unique factorization, so some solutions in K of A + B = C may not
be proportional to any solution in relatively prime elements of O . Thus it is more natural to formulate
the conjecture in terms of the ratio F' = A/C, which is invariant under scaling (A4, B, C). Briefly, we
replace N(ABC) in the LHS of (6.13) or (6.14) by the product of the norms of all prime ideals of Og
at which F is congruent to one of 0, 1, oo, and in the RHS we take the (1 — €)-th power of the height
of F, appropriately defined, rather than of C or of max(|A|, |B|,|C|). See [Vo, p.84] for the details.
Mason’s theorem still defeats attempts at easy disproofs -— recall that the coefficients of the rational
function F were allowed to be arbitrary complex numbers.

More subtle is the question of how the constant ¢, in the ABC conjecture should depend on K. In
the context of Mason’s theorem, if we replace C(¢) by a finite-degree extension we get the function
field of a compact Riemann surface of some genus g, and then the lower bound D + 2 on the size
of F~1({0,1, 00}) is lowered by 2g. Granville and Stark [GS] propose an anologous “uniform ABC
conjecture”, in which the LHS of (6.13) or (6.14) is multiplied by |disc(k/Q)|"/!"% and then the
constant ¢, in the RHS is independent of K. Remarkably, they then show that this uniform ABC
conjecture implies the long-standing conjecture that the class number of an imaginary quadratic field
Q(v/=d) (with d > 0 a squarefree integer) is bounded below by a constant multiple of d'/?/log d, and
thus that the Dirichlet L-function attached to an odd character has no “Siegel-Landau zero” (a zero s
with 1 — s « 1/ log(d); the nonexistence of such zeros is an important special case of the Riemann
Hypothesis for such L-functions). The proof uses special values of modular functions arising from
elliptic curves with complex multiplication by the ring of algebraic integers in Q/—d).

Finally we consider the generalization to more than three variables, to integers satisfying +A+
B+ C + D = 0 and beyond. In each case we ask: Given max(]A|,|B|,|C],...), how small can
the product N(AYN(B)N(C)--- get? As before we must assume that the integers have no common
factor. With more than three variables, it no longer follows that they are relatively prime in pairs,
but we must at least assume that no proper sub-sum of +4 + B + C' £ .- - vanishes, to avoid such
trivialities as 27 + 1 — 2" — 1 = 0. It is then known that an upper bound on N(A)N(B)N(C)---
implies an upper bound on max(|A[,|B],|C],...), but again this known bound is much too large for
our purpose. Even in the special case A = Aquw™, B = Byz™, etc. we have a difficult question: How

14The reader who got this far may well wonder where this counterexample comes from. It arises naturally in the theory of
elliptic modular functions. For 7 in the upper half-plane . let () be the Dedekind eta function €™/ 12 [T ; (1—-e?™i"7 )24,
and define A(7) = 16(n3 7)1/2/17§)8 = 16q]1>%, (1 + ¢*™)/(1 + ¢*~1) where n,, = n(k7) and ¢ = €™*7. Then A
generates the field of modular functions invariant under the ideal hyperbolic triangle group T'(2), and takes the values 0, 1, oo at
the cusps of that group. The function F* expresses X in terms of the generator —-3(1]3/1]1)10(171 /27)2/7)3/2176)4 of the modular
functions for ['(2) NTo(3), and thus gives explicitly the map from the corresponding modular curve to the modular curve X(2)
corresponding to ['p(2). The coordinate A of X (2) parametrizes elliptic curves E : Y? = X(X — 1)}{(X — X) with all their
2-torsion points rational; z parametrizes 3-isogenies E — E’ between pairs of such curves; and the involution z < —3/z takes
the isogeny E — E’ to the dual isogeny E’ — E. See [EI2].
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are the nontrivial primitive solutions of Aqw™ + Byz™ + Cyy™ = D,2" distributed? Our heuristics
suggest that solutions should be plentiful for n < 4 (if there is a nonzero solution to begin with), sparse
for n = 4, and bounded for n > 4. Likewise for N variables, with critical exponent n = N.

Unfortunately this guess is at best close to the truth. Euler already found a polynomial solution for
w*+z* = y* + 24, giving plentiful solutions for that equation, starting with 1334 + 1344 = 594 + 1584,
There is even a polynomial family of solutions of w® + z° = y° + 2%, though sadly not over Q:

wor=2+(t2-2), yz=22+i(t2+2). (6.17)

For n = 6 one can still obtain infinitely many primitive solutions for some choices of (Ao, By, Co, Dq),
using the polynomial identity

F+t-1P3+ 2 —t-1P =25 -2

Indeed let (Ag, By, Co, Do) = (3,%,2,2). Then if there are infinitely many rational solutions
(t,u,v) of
2rt—1=ou?, #—t-1=7p2 (6.18)

then each yields a rational solution (u, v, 1,£) of Aqw® + ByzS + Cyy® = D, 2%, and thus a primitive
integer solution by clearing common factors. Now it can be shown that (6.18) is an elliptic curve,
which has positive rank if it has a single rational point with ¢ ¢ {0, 1, 00}. The simplest such (a, 3)
is (5,1) with ¢t = 2, giving 125+ 1 +2 = 225, The next few ¢ values for (o, 8) = (5,1) are —82/19,
—148402/91339, and —10458011042/1213480199, giving the solutions!

(31,19,89,82), (5009, 91339, 165031, 148402),
(4363642319, 1213480199, 10981259039, 10458011042).

Note that, unlike the ABC conjecture, our naive guess for Aqw™ + Byz™ + Cyy" = Dyz™ was
disproved by polynomial identities. Thus even Mason’s theorem has no good analogue here. One can
use a 3x 3 Wronskian to get an “ABCD theorem”, and likewise for more variables, but these inequalities
are no longer sharp. For example, if (w, z,y, z) is a nontrivial solution in C[t] of w™ + z" = y™ + 2"
then one can show that n < 8 by counting roots of Wi(w™, z™,y™), but it is not known whether n = 6
or n. = 7 can occur, nor whether all nontrivial solutions for n = 5 are equivalent with (6.17).

Can we salvage from our predicament a conjecture that is both plausible and sharp? Lang [La2]
suggested that such conjectures should still be true “on a nonempty Zariski-open set”, that is, when we
exclude variables that satisfy some algebraic condition. This may well be true, though the possibility
of an unpredictable exceptional set makes Lang’s conjectures even harder to test. As an indication of
the power of these conjectures, we conclude by citing one striking application. Recall that Mordell
conjectured, and Faltings proved, that an algebraic curve of genus g > 1 over Q has only finitely many
rational points. The conjecture and proofs are silent on how the number of points can vary with the
curve. But Caporaso, Harris, and Mazur showed [CHM] that Lang’s conjectures imply a uniform upper
bound B(g), depending only on g, on the number of rational points of any genus-g curve over Q!
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Mathematical Minutiae:
Differentiation as a Functor

Athanasios Papaioannou *07f
Harvard University
Cambridge, MA 02138
apap@fas.harvard.edu

Unlike any other article in this journal, this one begins with a warning: Categories, beautiful and
powerful as they may be, are not panacea and should be used with great prudence. This short note
presents a fun, but silly use of categories.

7.1 The Chain Rule

In what follows, R denotes the set of real numbers. By 7z we mean the category whose objects are pairs
(U, u) of open subsets U C R together with a point u € U, and whose morphisms (U, u) — (U’,u’)
are differentiable functions f preserving base points, in the sense that f(u) = /. By # we mean the
category whose unique object is R, and whose morphisms are given by

Homgz(R,R) = {¢,: z— az | a € R};

the composition of ¢, and ¢ is defined to be ¢q5. We now claim that the assignation D : 1o — z
given by

Uyw) — R
Uy LWy — L
dz _—

is a functor.
Indeed, we need to check that, given a diagram of the form

U,w) L Uy L (U "),

the following relation holds:

D(go f) = D(g) o D(f).

But this last expression can be rewritten as (g o f)(u) = ¢'(u’) f'(u), which is exactly the chain rule
at u! Moreover, to say that D preserves the identity is precisely to say that the derivative of f(z) = =
is 1, which is clearly true.

1 Athanasios Papaioannou, Harvard '07, is a mathematics concentrator.
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7.2 Getting more serious

A rather more fruitful way to think about derivations in terms of functors is that of modern geometry.
We pursue this with extreme economy, at the expense of using many undefined words. Let’s think of
smooth manifolds as ringed spaces, i.e., pairs (M, &r) consisting of a topological space together with
a sheaf of functions, such that (M, &) is locally isomorphic to (R™, ), the ringed space of R™
together with the sheaf of smooth functions on it. To every point of M we may attach a ring, that of the
derivations from the stalk of the structure sheaf Osm,m to R—this is a well-known gadget, the tangent
space at m. Now, there is a way of compiling all these tangent spaces into the tangent sheaf on M,
which is the dual to the better-known sheaf of differential forms § Mm/r- And that these sheaves, like all
sheaves, are functors of some sort, should please any rabid categorialist.
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Problems

The HCMR welcomes submissions of original problems in any field of mathematics, as well
as solutions to previously proposed problems. Proposers should direct problems to Problems
Editor Zachary Abel at hcmr-problems@hcs.harvard.edu or at the address on the in-
side front cover. A complete solution or a detailed sketch of the solution should be included,
if known. Solutions to previous problems should aiso be directed to the Problems Editor at
hemr-solutions@hcs.harvard.edu or at the address on the inside front cover. Solutions
should include the problem reference number, as well as the solver’s name, contact information, and
affiliated institution. Additional information, such as generalizations or relevant references, is also wel-
come. All correct solutions will be acknowledged in future issues, and the most outstanding solutions
received will be published. To be considered for publication, solutions to the problems below should
be postmarked no later than November 1, 2007. An asterisk beside a problem or part of a problem
indicates that no solution is currently available.

S07 - 1. How many hyperplane cuts are necessary to divide a 3 x 5 x 7 x 9 x 11 rectangular solid into
3.5.7-9.11distinct 1 x 1 x 1 x 1 x 1 hypercubes, if previously separated pieces can be rearranged

between cuts?

Proposed by Joel Lewis *07.

S07 - 2. Suppose f : [0,1] — R is an integrable function such that y - f(x) + = - f(y) < z* + y*.

Show that fol f(z)dx < Z. (One example of such a functionis f(z) = z.)

T & fodipd

Proposed by Scott Kox}m\irers ’09.

prove:

(a) Circles Qapc and Qa7 n p are congruent, and

(b) these circles intersect each other in 60° arcs.

"v'\y

Proposed by Zachary Abel ’10.

$07 - 4. For a prime p, let Z(,) C Q denote the localization of the integral domain Z at the prime ideal
(p); that is, the subring of Q consisting of the rational numbers with denominators prime to p. The
canonical homomorphism Z — F, induces a canonical homomorphism ¢;, : Z(;) — Fp, the reduction
modulo p homomorphism with kernel the maximal ideal pZ,, of the local ring Z(;,). (For example,

#5(1/2) = 3 € F5.) )
Let V be the set of primes p for which {£3=1 | n € N} C Z,.

(a) Characterize the set V.

(b) Show that V and P\ V are both infinite sets, where P is the set of primes. (In other words, show
that V is neither finite nor cofinite in the set of primes.)
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(c) Show that, for every p € V, the map N — F,, given by n +— dp((3" —1)/(2" - 1)) is periodic.
(For example, 5 € V, and the corresponding map N — Fy is 2, 1, 3, 2,2,1,3,2,2,1,3,2,...)

Proposed by Vesselin Dimitrov 09.

S07-5. (a) Prove that, for distinct positive real numbers a and b, the following inequality holds:
atb  aTbvs  a-b
2 = e T lna—-Inb’

(b*) Show that both inequalities are strict.

Proposed by Shrenik Shah ’09.
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Endpaper:
How to Compute Determinants

Prof. Dennis Gaitsgory!

Harvard University

Cambridge, MA 02138
gaitsgde@math.harvard.edu

During one of my years in graduate school in Israel, I was a teaching fellow for a class on linear
algebra. I found the job annoying for two reasons: On one hand, the students were primarily non-math
majors. But more importantly, my class started at eight in the moming, which did not rhyme well with
my lifestyle at the time. As a result, I could not bring myself to prepare my section in advance. Instead
I improvised each time....

One day I found myself explaining determinants. “You know, for a generic matrix a determinant is
never zero. Somebody, give me an example of a matrix!” The class produced no reply. They were no
less sleepy than I was. In fact, not only were they asleep but they were suspicious as well. They did not
want to risk giving a matrix which by misfortune would have a zero determinant, with the gloomy title
of “degenerate” attached to it.

So I proceeded: “OK, let’s take the first matrix that comes to mind.”

1 2 3
4 5 6
7 8 9
I set about computing the determinant by the usual formula. I was never good with computations and,
once again, I was especially sleepy:
1-5:9-2-4-94+£3-4-8+....

It took me a good 10 minutes. And what a shock, the determinant was zero! “I must have made a
mistake,” I told the class. T ran through the calculations once more, checking every step. Another 10
minutes passed. Zero again!

1 tried to save myself. “OK, but sometimes the determinant is zero. Sorry. But now let’s take a
really generic matrix.”

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

Another lengthy computation. . ..
At the end of that semester I was forced to enroll in a special seminar for delinquent instructors.

Prof. Dennis Gaitsgory is a faculty member of the Harvard Mathematics Department.
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