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Each of the six questions is worth 10 points.

1) Let H be a (real or complex) Hilbert space. We say that a set of vectors {φn} ⊂
H, n = 1, 2, . . ., has “property D” provided H is the closure of the space of all finite
linear combinations of the φn. Now let {φn}, n = 1, 2, . . ., be an orthonormal set
having property D, and {ψn} a set of vectors satisfying

∞∑

n=1

‖φn − ψn‖2 < 1 ,

where ‖ ‖ refers to the Hilbert space norm. Show that {ψn} also has property D.

2) Let K be the splitting field of the polynomial x4 − x2 − 1. Show that the Galois
group of K over Q is isomorphic to the dihedral group D8, and compute the lattice
of subfields of K.

3) Let S be a smooth surface in R3 defined by r(u, v), where r is the radius vector
of R3 and (u, v) are curvilinear coordinates on S. Let H and K be respectively the
mean curvature and the Gaussian curvature of S. Let A and B be respectively the
supremum of the absolute value of H and K on S. Let a be a positive number
and n be the unit normal vector of S. Consider the surface S̃ defined by ~ρ(u, v) =
r(u, v) + an(u, v). Let C be a curve in S defined by u = u(t) and v = v(t). Let C̃
be the curve in S̃ defined by t 7→ ~ρ(u(t), v(t)). Show that the length of C̃ is no less
than the length of C multiplied by 1− a

(
A+
√
A2 + 4B

)
. (Hint: compare the first

fundamental form of S̃ with the difference of the first fundamental form of S and 2a
times the second fundamental form of S.)

4) Compute the integral

∫ ∞

0

xa−1

1 + x4
dx

(
0 < a < 4

)
.



5) The Grassmann manifold G(2, 4) is the set of all 2-dimensional planes in R4.
More precisely,

G(2, 4) =

{
M =

(
a b c d
e f g h

) ∣∣∣∣ a, . . . , h ∈ R , M has rank 2

}
/ ∼

where M1 ∼ M2 if and only if M1 = AM2 for some invertible 2 × 2 real matrix A.
We equip G(2, 4) with the quotient topology; it is a compact orientable manifold.

a) Compute π1(G(2, 4)) (You may want to use the fact that given any 2 × 4 real
matrix M there exists an invertible 2× 2 real matrix A such that AM is in reduced
row-echelon form. This gives a cell decomposition of G(2, 4) with one cell for each
possible reduced row-echelon form.)

b) Compute the homology and cohomology groups of G(2, 4) (with integer coeffi-
cients), stating carefully any theorems that you use.

6) a) What is the dimension of the space of hyperplanes in Pn+1 containing a fixed
linear subspace L of dimension k?

b) Let Q ⊂ Pn+1 be a smooth quadric over C. Show that the map Q → (Pn+1)∗

associating to a point x ∈ Q the tangent hyperplane TxQ ⊂ Pn+1 is an isomor-
phism onto its image. (Here (Pn+1)∗ is the dual projective space parameterizing
hyperplanes in Pn+1.)

c) Show that if L is a linear subspace contained in a quadric Q as in b), then
dim L ≤ n/2.
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1) Show that if Y ⊂ Pn is a projective subvariety of dimension at least 1, over an
algebraically closed field, and H ⊂ Pn is a hypersurface, then Y ∩H 6= ∅. (Justify
any intermediate statement you may use.)

2) Let u 7→ ~ρ(u) be a smooth curve in R3. Let S be the surface in R3 defined by
(u, v) 7→ ~ρ(u) + v ~ρ ′(u), where ~ρ ′(u) means the first-order derivative of ~ρ(u) with
respect to u. Assume that the two vectors ~ρ ′(u) and ~ρ ′(u) + v~ρ ′′(u) are R-linear
independent at the point (u, v) = (u0, v0), where ~ρ ′′(u) means the second-order
derivative of ~ρ(u) with respect to u. Verify directly from the definition of Gaussian
curvature that the Gaussian curvature of S is zero at the point (u, v) = (u0, v0).

3) a) Show that every linear fractional transformation which maps the upper half
plane onto itself is of the form

F (z) =
a z + b

c z + d
, with a, b, c, d ∈ R , a d− b c = 1 .

b) Show that every linear fractional transformation which maps the unit disk onto

itself is of the form

F (z) =
α z + β

β̄ z + ᾱ
, with α, β ∈ C , |α|2 − |β|2 = 1 .

4) a) State van Kampen’s Theorem. Use it to exhibit a topological space X such
that π1(X) is isomorphic to the free group on 2 generators.

b) Show that the free group on 2 generators contains the free group on n generators
as a subgroup of finite index.

c) Show that every subgroup of a free group is free.
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5) Let v1, . . . vn be complex numbers, and let A be the matrix:

A =




v1 v2 v3 . . . vn
vn v1 v2 . . . vn−1

vn−1 vn v1 . . . vn−2
...

...
...

...
v2 v3 v4 . . . v1



.

Compute the eigenvalues and eigenvectors of A.

6) Given f ∈ C∞0 (R) and ε > 0, consider the function

gε(x) :=

∫

|x−y|>ε

f(y)

x− y dy .

a) Show that
Hf(x) := limε→0 gε(x)

exists for each x ∈ R, and that Hf ∈ C∞(R).

b) Exhibit a universal constant C such that

‖Hf‖L2 = C ‖f‖L2 .

Show how to extend the operator H to an isomorphism from L2(R) to itself.
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1) a) Let G be a group of order n, acting on a finite set S. Show that the number
of orbits of this action equals

1

n

∑
g∈G

#{x ∈ S | gx = x}.

b) Let S be the set of integer points in the rectangle [0, 3] × [0, 2]. We consider
two subsets of S equivalent if one can be transformed into the other by a series
of reflections around the horizontal and vertical axes of symmetry of the rectangle.
How many equivalence classes of four-element subsets of S are there?

2) Let U ⊂ C be a connected open subset. Carefully define the topology of locally
uniform convergence on O(U), the space of holomorphic functions on U . Show that
O(U), equipped with this topology, is a Fréchet space.

3) Consider the two dimensional torus T2 = S1× S1, where S1 = R /2π Z. For any
fixed α ∈ R, find all functions f ∈ L2(T2) with the property

f(x1 + α, x1 + x2) = f(x1, x2) .

4) Let Γ be a set of seven points in CP3, no four of them lying in a plane.
What is the dimension of the subspace of homogeneous quadratic polynomials in
C[X0, X1, X2, X3] vanishing along any subset {p1, . . . , pm} ⊂ Γ, m ≤ 7 ?

5) (Smooth Version of Michael Artin’s Generalization of the Implicit Function The-
orem.) Let a and b be positive numbers. Let R be the ring of all R-valued infinitely
differentiable functions on the open interval (−a, a). For elements F , G, H in R
we say that F is congruent to G modulo H in R if there exists some element Q
of R such that F − G = QH as functions on (−a, a). Let f(x, y) be an R-valued
infinitely differentiable function on {|x| < a, |y| < b} with f(0, 0) = 0. Denote by
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fy(x, y) the first-order partial derivative of f(x, y) with respect to y. Let g(x) be
an element of R such that g(0) = 0 and sup|x|<a |g(x)| < b. Assume that f(x, g(x))

is congruent to 0 modulo (fy(x, g(x)))2 in R. Prove that there exists an R-valued
infinitely differentiable function q(x) on |x| < η for some positive number η ≤ a such
that

(i) q(0) = 0,

(ii) f(x, q(x)) ≡ 0 on |x| < η,

(iii) q(x) is congruent to g(x) modulo fy(x, g(x)) in the ring of all R-valued infinitely
differentiable functions on the open interval (−η, η).

(Note that the usual implicit function theorem is the special case where g(x) ≡ 0
and fy(x, g(x)) is nowhere zero on (−a, a) and is therefore a unit in the ring R.)

Hint: Let q(x) = g(x) + fy(x, g(x))h(x) and solve for h(x) by the usual implicit
function theorem after using an appropriate Taylor expansion of the equation.

6) For each of the following, either exhibit an example or show that no such example
exists:

a) A space X and a covering map f : CP2 → X.

b) A retract from the surface S to the curve C

c) A retract from the surface S ′ onto the curve C ′
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