The theory of group representations is in the center of interest of I. Gelfand.
I think that this is related to the nature of this domain which combines analysis,
algebra and topology in a very intricate fashion. But this richness of the Represen-
tation Theory should not be taken as self evident. To a great extent we owe this
understanding to works of I. Gelfand, to his unique way to see mathematics as a
unity of different points of view.

In the late thirties, when Gelfand started his mathematical career, the theory of
representations of compact groups and the general principles of harmonic analysis
on compact groups was well understood due to works of Herman Weyl. Harmonic
analysis on locally compact abelian groups was developed in works of Pontryagin.
The general structure of operator algebras was clarified in works of Murrey-Von
Neumann. But the representation theory of non-compact non-commutative groups
was almost non-existent. The only result I know is the work of E. Wigner on repre-
sentations of the inhomogeneous Lorentz group. Wigner has shown that the study
of physically interesting irreducible representations of this group can be reduced to
the study of irreducible representations of it’s compact subgroups.

It was not at all clear whether the theory of representations of real semisimple
non-compact groups is “good”, i.e., whether the set of irreducible representations
could be parameterized by points of a “reasonable” set, and whether the unitary
representations can be uniquely decomposed into irreducible ones. The “conven-
tional wisdom” was to expect that the beautiful theory of Murrey-Von Neumann
factors is necessary for the description of representations of real semisimple non-
compact groups. On the other hand, Gelfand, for whom Gauss and Riemann are the
heroes, expected that the theory of representations of such groups should possess
the classical beauty.

Gelfand’s first result [1942] (with Rajkov) in the theory of representations of
groups is a proof of the existence of “sufficiently many” unitary irreducible repre-
sentations for any locally compact group G. In other words, any unitary represen-
tation of G is a direct integral of irreducible ones. The proof of this result is based
on the very important observation that the representation theory of the group G
is identical to the theory of representations of the convolution algebra C.(G) of
measures on G with compact support, and on an application of Gelfand’s theory of
normed rings.

Next, in the late forties there was a stream of papers (most of them joint with
Naimark) which developed the main concepts of the representation theory of com-
plex classical groups G. It would be a much simpler task to describe the concepts
which appeared later than to describe the richness of these works.

Gelfand believed that the space G of irreducible representations of GG is a rea-
sonable “classical” space. If I understand correctly, the first indication of the cor-
rectness of this intuition came from the theory of spherical functions, developed
in early forties but published only in 1950. Let K C G be the maximal com-
pact subgroup and Go C G be the subset of irreducible representations of class 1
[that is, such representations (w,V) of G that VE # 0]. Gelfand observed that
the subset Gy is equal to the set of irreducible representations of the subalgebra
C.(K\G/K) C C.(G) of two-sided K-invariant functions on G, proved the commu-
tativity of this algebra, and identified the space of maximal ideals of C,(K\G/K)
with the quotient “T/W where LT is the torus dual to the maximal split torus
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T C G and W is the Weyl group. The generalization of this approach developed
in 50-s by Harish-Chandra and Godement led to the proof of the uniqueness of the
decomposition of any representation of the group G into irreducibles.

Given such a nice classification of irreducible representations of class 1, it was
natural to guess that the total space @ is also an algebraic variety.

But for this purpose one had to find a way to construct irreducible represen-
tations of G. Gelfand introduced the notion of parabolic induction [for classical
groups] and in particular studied representations m, of G induced from a character
x of a Borel subgroup B C G. He showed that for generic character x of T = B/U
the representation m, is irreducible, and the representations m,, 71';( are equivalent
if and only if the characters x, x' of T are conjugate under the action of the Weyl
group W. The proof is based on the the decomposition G = U, cw BwB for classi-
cal groups. This decomposition was extended by Harish-Chandra to the case of an
arbitrary semisimple group and is known now as the Bruhat decomposition.

This construction gives many irreducible representations. But how to show that
not much is missing? In the case of a compact group G it is well known that all
the representations of G are constituents of the regular representation. Therefore,
to see that a list of representations m,,a € A of G is complete, it is sufficient
to show that one can write the delta function §, on G as a linear combination
of the characters ¢r(m,). But for representations (7,V) of a non-compact group
G, which are typically infinite dimensional, the trace of the operator 7(g),9 € G
is not defined. The ingenious idea of Gelfand was to define characters tr(w) as
distributions. That is, he showed that for any smooth function f(g) with compact
support, the operator my (f) := [ f(g)my(g9)dyg is of trace class, and defined the
distribution tr(w) by tr(7)(f) := trr(f). Now one could look for a W-invariant
measure [called the Plancherel measure] px on the space X of unitary characters
of T such that
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It is not difficult to see that such a measure px is unique [if it exists] and the knowl-
edge of px is equivalent to the explicit decomposition of the regular representation
L?(@) into the irreducible ones.

Gelfand [in a series of joint works with Naimark] was able to guess a beautiful
algebraic expression for the Plancherel measure px in the case of classical complex
groups, and to prove equality (1) by a very intricate explicit calculation - a great
reward for difficult work.

As a continuation of this series of works, Gelfand asked a number of questions
[which he was able to answer only in particular cases|, which influenced the devel-
opment of representation theory for many years.

a) Gelfand [in a joint work with Graev] classified generic irreducible representa-
tions of the group SL(n,R). They found that G is a union of pieces called series
which correspond to conjugacy classes of maximal tori. Moreover the series corre-
sponding to non-split tori have realizations in spaces of [partially] analytic functions.
Gelfand conjectured that the analogous description of the space G should be true
for all real semisimple groups and it should be possible to realize discrete series
in appropriate spaces of analytic functions. The first part of the conjecture was
justified by Harish-Chandra [who constructed discrete series of representations for
real semisimple groups G, and found the Plancherel measure concentrated on rep-
resentations unitary induced from discrete series of Levi subgroups]. The second
part was modified by Langlands who suggested the realization of discrete series
[which exist iff there is a compact maximal torusT C @] in the space of cohomolo-
gies H{(G/T¢,F) of homogeneous holomorphic vector bundles F on G/T° [while
Gelfand considered only the realization in sections of such bundles].



b) Gelfand [in a joint work with Graev] constructed the analog of the Paley-
Wiener theorem for groups SL2(C) and SL2(R) [that is, a decomposition of the
representation of G on the space C° (G) of smooth functions with compact support],
and raised the question about the extension of this result to other groups. This
generalization was obtained by J. Arthur in 1983.

c¢) Gelfand [also in a joint work with Graev] constructed the decomposition of
representations of the group SL»(C) on the space L?(SLy(C)/SLy(R), and asked
the question about the decomposition of representations of the group G on L*(G/H)
where H C G is the fixed points of an involution. An extension of this result to
arbitrary such pair (G, H) is achieved very recently [see the talk of P. Delorme at
the ICM congress of 2002].

d) Gelfand has shown that many special functions such as Bessel and Whit-
taker functions, Jacobi and Legendre polynomials appear as matrix coefficients of
irreducible representations. This interpretation of special functions immediately ex-
plains the functional and differential equations for these functions. It is clear now
that [almost] all special functions studied in the 19-20 centuries can be interpreted
as matrix coefficients or traces of representations of groups or their quantum analogs
(e.g., works of Tsuchiya-Kanie, I. Frenkel-Reshetikhin on the representation the-
oretic interpretation of hypergeometric (respectively g-hypergeometric) functions,
works of Koornwinder, Koelink, Noumi, Rosengren, Stokman, Sugitani and oth-
ers on representation theoretic interpretation of Askey-Wilson, Macdonald, and
Koornwinder polynomials).

The next series of Gelfand’s works [with Tsetlin] is on irreducible finite-dimen-
sional representations of classical groups G. The classification of such representa-
tions (my, V) was well known but Gelfand asked a new question, partially influenced
by his interest in physics- how to find a “good” realization of these representations.
In other words, how to find a basis in V) such that it is possible to compute matrix
coefficients of m)(g), g € G in these bases. Such a basis [called the Gelfand-Tsetlin
basis] was constructed for irreducible representations of groups SL,, and SO,,, and
is now a core of many works in representation theory and combinatorics.

Gelfand and Graev found the expression for the matrix coefficients of the rep-
resentations m) in the terms of discrete versions of I'-functions. This realization of
finite-dimensional representations has an important analog for infinite-dimensional
representations of groups over local fields.

As a part of the theory of finite-dimensional representations Gelfand studied the
Clebsch-Gordan coefficients which give a decomposition of the tensor products of
irreducible representations into irreducible components. He noticed that [at least in
the case G = SL-] the Clebsch-Gordon coefficients of G are discrete analogs of the
Jacobi polynomials which are matrix coefficients of irreducible representations of
G. Possibly an explanation of this can be given using the theory of quantum groups
where multiplication and comultiplication are almost symmetric to each other.

The next series of Gelfand’s works is on representations of groups over finite and
local fields F'. The basic results are the proof of the uniqueness of a Whittaker vec-
tor, the existence of a Whittaker vector for cuspidal representations of GL, (F), the
construction of an analog of the Gelfand-Tsetlin basis for cuspidal representations
of GL,(F), and the description of cuspidal representations of GL, (F') in terms of
[-functions [joint works with Graev and Kazhdan]. But I think that the most im-
portant work in this area is the complete description of irreducible representations
of the groups SL»(F') and GLo(F) for local fields F' with the residue characteristic
different from 2 [a joint work with Graev and Kirillov]. They have shown that
irreducible representations of G Ly (F') are [essentially] parameterized by conjugacy
classes of pairs (T, x) where T' C GL2(F') is a maximal torus and x : T — C*
is a character. Moreover they found a formula for the characters tre, (g) of these



representations, and an explicit expression for the Plancherel measure. A striking
and until now unexplained feature of these formulas is that they are essentially
algebraic. For example, the Mellin transform [in x| L(g,t) of trr,(¢g) which is a
function on GLo(F) x T is given by

L(g,t) =
6(det(g), Nm(t))er (tr(g) — tr(t))/|tr(g) — tr(t)].
Here T = E* where FE is a quadratic extension of F', ep : F* — =+ is the quadratic
character corresponding to E, tr is the matrix trace, and tr, Nm are the trace and
norm maps from E to F.

The understanding of the existence of an intrinsic connection between the struc-
ture of irreducible representations of groups over local fields and number theory was
greatly clarified by Langlands. On the other hand, a generalization of algebraic for-
mulas for the Mellin transform of characters and for the Plancherel measure was
never found.

In an another work Gelfand and Graev found a description of the irreducible
representations of the multiplicative group D* of quaternions over F' as induced
from 1-dimensional representations of appropriate subgroups. This way to construct
irreducible representations of D* as induced from 1-dimensional representations of
appropriate subgroups was later extended by R. Howe to other p-adic groups.

The description of representations of the groups SL(F) and GL(F) for local
fields is presented n the book “Generalized functions v.6” [writtem with Graev
and Piatetsky-Shapiro]. In the same book Gelfand developes the theroy of repre-
sentations of semisimple adelic groups G(Ag ) for global fields K. He defines the
cuspidal part L3(G(Ax)\G(K) C L?*(G(Ak)\G(K) of the space of automorphic
forms, proves that the representations of G(Ax) on L3(G(Ak)\G(K) is a direct
sum of irreducible representations and develops a representation -theoretic inter-
pretation of the theory of modular forms. The works of Langlands are very much
influenced by these works of Gelfand.

It became clear that the description of a generic representations of any semisiple
Lie group G [or a Lie algebra g] almost did not depend on a choice of particular
group. So Gelfand tried to find a way to express this similarity in an intrisic way.
In a series works with Kirillov he studies the structure of the skew-field F(g) of
fractions for the universal envelopping algebra U(g). He found that the skew-fields
F(g) are almost defined by the tansendence degree of the center Z((g)) [equal to the
rank r(g) of g] and the their Gelfand-Kirillov dimension [equal to 1\2(dim(g)—r(g)).
These works are the basic of works of A. Joseph on the structure of the category of
Harish-Chandra modules.

The last series of works of Gelfand on representation theory is on category O
of representations of the Lie algebra g of G. This category of representations was
defined by Verma but the basic results are due to J. Bernstein, I. Gelfand, and
S. Gelfand. They constructed a resolution of finite-dimensional representations
by Verma modules Vi,,w € W [known as the BGG resolution], discovered the
duality between irreducible and projective modules in the category O, and found
the relation between the category O and the category of Harish-Chandra modules.
These results are the corner stone of the theory of representations of semi-simple
Lie algebras and their affine analogs.

But their main discovery is the existence of a strong connection between algebraic
geometry of the flag space B and the structure of the category O. For example,
they have shown that there is an imbedding of V,, into V,, iff the Bruhat cell
BwB C B is in the closure of Bw'B. This connection between algebraic geometry
and the category of representations is the basis for the recent geometric theory of
representations.



I did not discuss a number of other important works of Gelfand on representation
theory [such as indecomposable representations of semisimple Lie groups, models
of representations and representations of infinite-dimensional groups] but I want
to mention two series of works which originated in the representation theory but
have an independent life. The appearance of such works is very natural, since for
Gelfand representation theory is a part of a much broader structure of analysis.

Integral geometry is an offshoot of the representation theory.The proof of the
Plancherel theorem for complex groups is equivalent to the construction of the in-
version formula which gives the value of a function in terms of its integrals over
horocycles. Gelfand [in a series of joint works with Graev,Shapiro, Gindikin, Gon-
charov...] found inversion formulas for reconstruction of the value of a function
on a manifold in terms of its integrals over an appropriate family of submanifolds.
The existence of such inversion formulas found applications in such areas as sym-
plectic geometry, multidimensional complex analysis, algebraic analysis, nonlinear
differential equations, and aspects of Riemannian geometry, and also in applied
mathematics (tomography).

Analogously, the works of Gelfand [with Ponomarev and later with Bernstein]
on quivers were motivated by the problems of representations theory- the descrip-
tion of indecomposable representations for the Lorentz group. But the the inner
development of the subject led to a beautiful and deep theory which later in works
of Ringel, Lusztig and Nakajima made a full circle and became the foundation for
the geometric representation theory of Lie algebras and quantum groups.



