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INTRODUCTION

This conference is called “The unity of mathematics”. I would like to
make a few remarks on this wonderful theme.

I do not consider myself a prophet. I am simply a student. All my life
I have been learning from great mathematicians such as Euler and Gauss,
from my older and younger colleagues, from my friends and collaborators,
and most importantly from my students. This is my way to continue work-
ing.

Many people consider mathematics to be a boring and formal science.
However, any really good work in mathematics always has in it: beauty,
simplicity, exactness, and crazy ideas. This is a strange combination. I
understood earlier that this combination is essential on the example of clas-
sical music and poetry. But it is also typical in mathematics. It is not by
chance that many mathematicians enjoy serious music.

This combination of beauty, simplicity, exactness and crazy ideas is,
I think, common to both mathematics and music. When we think about
music we do not divine it into specific areas as we often do in mathemat-
ics. If we ask a composer what is his profession, he will answer: “I am a
composer.” He is unlikely to answer, ”I am a composer of quartets.” Maybe
this is the reason why when I am asked what kind of mathematics I do, I
just answer, “I am a mathematician”.

I was lucky to meet the great Paul Dirac, with whom I spent a few
days in Hungary. I learned a lot from him.

In the 1930’s, a young physicist, Pauli, wrote one of the best books on
quantum mechanics. In the last chapter of this book, Pauli discusses the
Dirac equations. He writes that Dirac equations have weak points because
they yield improbable and even crazy conclusions:

1. These equations assume that, besides an electron, there exists a
positively charged particle, the positron, which no one ever observed.

2. Moreover, the electron behaves strangely upon meeting the positron.
The two annihilate each other and form two protons.

And what is completely crazy:

3. Two photons can turn into an electron-positron pair.

Pauli writes that dispite this, the Dirac equations are quite interesting
and especially the Dirac matrices deserve attention.

I asked Dirac,



“Paul, why, in spite of these comments, did you not abandon your
equations and continue to pursue your results?”
“Because, they are beautiful.”

Now it is time for a radical perestroika of the fundamental language of
mathematics. I will talk about this later. During this time, it is especially
important to remember the unity of mathematics, to remember its beauty,
simplicity, exactness and crazy ideas.

It is very useful for me to remind myself than when the style of mu-
sic changed in the 20th century many people said that the modern music
lacked harmony, did not follow standard rules, had dissonances, and so on.
However, Shoenberg, Stravinsky, Shostakovich and Schnitke were as exact
in their music as Bach, Mozart and Beethoven.



1. NONCOMMUTATIVE MULTIPLICATION

We may start with rethinking relations between two simplest opera-
tions: addition and multiplication.

The traditional Arithmetic and Algebra are too restrictive. They orig-
inate from a simple counting and they describe and canonize simplest re-
lations between persons, groups, cells, etc. This language is sequential: to
perform operations is like reading a book, and the axiomatic of this lan-
guage (rings, algebras, skew-fields, categories) is too rigid. For example, a
theorem by Wedderburn states that a finite-dimensional division algebra is
always commutative.

1.1. Noncommutative high-school algebra.

For twelve years V. Retakh and I tried to understand associative non-
commutative multiplication. This is the simplest possible operation: you
operate with words in a given alphabet without any brackets and you mul-
tiply the words by concatenation. Part of these results are described in a
recent survey “Quasideterminants” by I. Gelfand, S. Gelfand, V. Retakh
and R. Wilson. I would say that noncommutative mathematics is as simple
(or, even more simple) than the commutative one, but it is different. It is
surprising how rich this structure is.

Take a quadratic equation

2 +pr+qg=0

over a division algebra. Let x1, 2 be its left roots, i.e. z? + pz; +q = 0,
¢t = 1,2. You cannot write —p = x1 + zo, ¢ = x122 as in the commutative
case. To have the proper formulas we have to give other clothes to x
and z2. Namely, assume that the difference is invertible and set zo; =
(1'1 — xg)xl(:cl — 1'2)_1, T1,2 = (LEQ — xl)xg(xg — 1'1)_1. Then

—p =212+ X1 =T21 + T2,

q = T1,2T1 = T2,1T2-

To generalize this theorem to polynomials of the n-th degree with left
roots z1,...,x, we need to find “new clothes” for these roots by following
the same pattern. For any subset A C {1,...,n}, A = (i1,...,0,) and
i ¢ A we introduce pseudo-roots x4 ;. They are given by the formula

Ta; =0(Tigy--o,Ti, i) Ti0(Tiy,. .. ,xim,azi)_l,
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where v(z;,,...,x; ,x;) is the Vandermonde quasideterminant, v(z;) = 1,

V(Tiyyeney @i, X)) =
Tiq ce Li €I;
1 ... 1 1
Suppose now that roots z1,...,z, are multiplicity free, i.e. the differ-
ences £4; — x4 ; are invertible for any Aandi ¢ A, j ¢ A, i # j.
Let z1,..., 2, be multiplicity free roots of the equation
" +az" 4+ +a, =0.
Let (i1,...,%n) be an ordering of 1,...,n. Set Z;, = Zfiy, ix 1},in> k =
1,...,n.
Theorem.

—a1 =&, + oo+ By,

a2 = E Lip,Lig)
p>q

c ey
anp = (—1)”.’,%% .. .’i“

These formulas lead to a factorization
Pt)=(t—2:,)t —%i,_,)...(t = T4,),

where P(t) = t" 4+ a1t" ! + .-+ a, and t is a central variable.

Thus, if the roots are multiplicity free, then we have n! different fac-
torizations of P(t). In the commutative case we also have n! factorizations
of P(t) but they all coincide.

Variables z 4 ; satisfy relations

TAU{i},j T TAi = TAU{j},i T TAj,

TAU{i},jTA,i = TAU{j},iTA,j

fori ¢ A, j ¢ A.



The algebra generated by these variables and these relations is called
(.. This is a universal algebra of pseudo-roots of noncommutative poly-
nomials. By going to quotients of this algebra, we may study special poly-
nomials, for example, polynomials with multiple roots when z4,; = =4 ;
for some 7,7 and A. Even to a trivial polynomial z™ there corresponds
an interesting quotient algebra Q0 of Q,,. For example, QY is a nontrivial
algebra with generators x1, ro and relations z? = 23 = 0.

Note that, @, is a Koszul (i.e. "good”) algebra and its dual also has

an interesting structure.

1.2. Algebras with two multiplications.

Sometimes a simple multiplication is a sum of two even simpler mul-
tiplications. A good example is the algebra of noncommutative symmetric
functions studied by Retakh, R. Wilson and me. In notations of Section
1.1, this algebra can be described as follows. Let z1,...,x, be free noncom-
muting variables. Let 71,...,%, be an ordering of 1,...,n. Define elements
Zi,,-..,%;, asabove. Let Sym be the algebra of polynomials in #;,,...,%;
which are symmetric in z1,...,x, as rational functions. Algebra Sym does
not depend on an ordering of 1,...,n, and we call it the algebra of non-
commutative symmetric functions in variables x1, ..., z,.

To construct a linear basis in algebra Sym, we need some notations.
Let w = ayp, ...ap, be a word in ordered letters a; < --- < a,,. An integer
m is called a descent of w if m < k and p,;, > pr+1. Let M(w) be the set
of all descents of w.

Choose any ordering of x1,...,z,, say, r1 < x2 < --- < x,. For any
set J = (j1,...,Jk) define

RJ: E LTpy---Tp,,s

where the sum is taken over all words w = z, ...zp,, such that M(w) =
{101 +d2, 1 H g2+ Ge-1 )

Polynomials R; are called ribbon Schur functions, they are noncom-
mutative analogs of commutative ribbon Schur functions introduced by
MacMahon.

One can define two multiplications on noncommutative ribbon Schur
functions. Let I = (i1,...,%), J = (J1,...,Js). Set I +J = (i1,...,%r-1,
br 451,025 0s)s Lo = (@1, ip—t1, 00, 51,52, - - Js)-
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Set,
Rrx1 Ry =Rr+5, Rr*xRj;=Ry;.

Multiplications %; and %9 are associative and their sum equals the standard
multiplication in Sym. In other words,

RiR; = Rri5+ Rr.j.

In fact, algebra Sym is freely generated by one element 1 4 --- + %,
and two multiplications *; and .

Two multiplications also play a fundamental role in the theory of in-
tegrable systems of Magri—-Dorfman—Gelfand—Zakharevich. The theory is
based on a pair of Poisson brackets such that any their linear combination
is a Poisson bracket. The Kontsevich quantization of this structure gives
us a family of associative multiplications.

I think it is time to study several multiplications. It may bring a lot
of new connections.

1.3. Heredity vs multiplicativity.

An important problem both in pure and applied mathematics is how
to deal with block-matrices. Attempts to find an adequate language for this
problem go back to Frobenius and Schur. My colleagues and I think that we
found an adequate language: quasideterminants. Quasideterminants do not
possess the multiplicative property of determinants but unlike commutative
determinants they satisfy the more important “Heredity Principle”: let A
be a square matrix over a division algebra and (A4;;) a block decomposition
of A. Consider A;;’s as elements of a matrix X. Then the quasideterminant
of X will be a matrix B, and (under natural assumptions) the quasideter-
minant of B is equal to a suitable quasideterminant of A. Maybe, instead
of categories one should study structures with the “Heredity Principle.”

The determinants of multi-dimensional matrices also do not satisfy
the multiplicative property. One cannot be too traditional here and to be
restrained by requiring the multiplicative property of determinants. I think
we have found an adequate language for dealing with multi-dimensional
matrices (see the book “ Discriminants, Resultants and Multidimensional
Determinants” by I.Gelfand, M. Kapranov, and A. Zelevinsky). A beautiful
application of this technique connecting Multilinear Algebra and Classical
Number theory was given in the dissertation “Higher composition laws” by
M. Bhargava. I may predict that this is just a beginning.
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2. ADDITION AND MULTIPLICATION

The simplicity of the relations between addition and multiplication is
sometimes illusory. A free abelian group with one generator (denoted 1) and
with operation of addition and a free abelian monoid with infinitely many
generators and with operation of multiplication (called prime numbers) are
the simplest objects one can imagine, but their “marriage” gives us the ring
of integers Z.

And even Gross, Iwaniec, and Sarnak cannot answer all questions about
the mysteries of the ring of integers. To solve the Riemann hypothesis, for
example.

The great physicist Lev Landau noticed: “I do not understand why
mathematicians try to prove theorems about addition of prime numbers.
Prime numbers were invented to multiply them and not to add.” But
for a mathematician, the nature of addition of prime numbers is a key
point in understanding the relations between two operations: addition and
multiplication.

Note, that theories like Minkowski mixed volumes and valuations are
very interesting forms of addition.

Invention of different types of canonical bases (Gelfand—Zetlin, Kazh-
dan—Lusztig, Lusztig, Kashiwara, Berenstein—Zelevinsky) are, in facts, at-
tempts to relate addition and multiplication. Many good bases have a
geometric nature: they are related or they should be related with triangu-
lations of some polyhedra.

Another attempt is the invention of matroids by Whitney. Whitney
tried to axiomatize a notion of linear independence for vectors. This gives
interesting connections between Algebra and Combinatorial Geometry. I
will talk about this later.

Algebraic aspects of different types of matroids, including Coxeter ma-
troids introduced by Serganova and me, are discussed in a recent book
“Coxeter matroids” by A. Borovik, I. Gelfand, and N. White. But this is
just a beginning. In particular, we have to invent matroids in Noncommu-
tative Algebra and Geometry.

3. GEOMETRY

Geometry has a different nature compared to Algebra: it is based on
a global perception. In Geometry we operate with images like TV-images.
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I do not understand why our students have troubles with Geometry: they
are watching TV all the time. We just need to think how to use it. Anyway,
images play more and more important role in modern life and so Geometry
should play a bigger role in mathematics and in education. In physics it
means that we should go back to geometrical intuition of Faraday (based
on an adequate geometrical language) rather then to the Calculus used by
Maxwell. People were impressed by Maxwell because he used Calculus: the
most advanced language of his time.

Many talks in this conference (Dijkgraaf, Nekrasov, Schwarz, Seiberg,
Vafa) are devoted to a search of proper geometrical language in physics.
And never forget E. Cartan and always learn from Atiyah and Singer.

3.1. Exact language and Geometry.
(see the picture)

3.2. Matroids and Geometry.

I want to mention only one part of Geometry: Combinatorial Geometry
and give you only two examples. One is a notion of matroids. I became in-
terested in matroids when I understood that they give an adequate language
for the geometry of hypergeometric functions by S. Gelfand, M. Graev, M.
Kapranov, A. Zelevinsky, and me. With R. Macpherson I used matroids for
a combinatorial description of cohomology classes of manifolds. Continuing
this line Macpherson used oriented matroids for a description of combina-
torial manifolds. We should also have a similar theory based on symplectic
and Lagrangian matroids.

In particular, we should have a good “matroid” description for Chern—
Simons classes.

3.3. Geometry and Protein Design.

Another example is my work with A. Kister ” Combinatorics and ge-
ometrical structures of beta-proteins”. Step by step, analyzing real struc-
tures, we are trying to create an adequate language for this subject. It is a
new geometry for live objects.

4. FOURIER TRANSFORMS AND HYPERGEOMETRIC FUNCTIONS

In our search of an adequate language we should not be afraid to chal-
lenge the classics, even such classics as Euler. Quite recently we realized
that our approach to hypergeometric functions can be based on the Fourier
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transform of double exponents like e‘”e\/__lwt where = and w are complex
and t is a real number. The Fourier transforms of such functions are func-
tionals over analytic functions. For example, let F(z,w, z) be the Fourier

transform of the double exponent e‘”e\/__lwt. Then
<F(.’L',w, Z)a ¢(Z)> - Z ng(—kCU)
k=0

We may define the action of F(z,w, z) as ¢ — Y Res[f(z)¢p(z)] where f(z)
is a meromorphic function with simple poles in kw, k =0,1,2,....

The function f(z) is defined up to addition of an analytic function. As
a representative of this class we may choose the function

or the function
(—2) 7T (2/w).

We believe now that the function I'y should replace the Euler function I'
in the theory of hypergeometric functions but this work with Graev and
Retakh is in progress.

5. APPLIED MATHEMATICS, NON-LINEAR PDE AND BLOW-UP

My search for an adequate language is based in part on my work in
applied mathematics. Sergey Novikov called me somewhere “an outstand-
ing applied mathematician.” I take it as a high compliment. I learned the
importance of applied mathematics from Gauss. I think that the greatness
of Gauss came in part because he had to deal with real-world problems
like astronomy and so on and that Gauss admired computations. For ex-
ample, I found recently that Gauss constructed the multiplication table for
quaternions thirty years before Hamilton.

By the way, I remember my “mental conversation” with Gauss. When
I discovered Fourier transforms of characters of abelian groups I had an idea
that now I can make a revolution with Gauss sums and to change Number
Theory. I even imagined telling this to Gauss. And then I realized that
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Gauss, probably, would tell me: “You, young idiot! Don’t you think that I
already knew it when I worked with my sums?”

5.1. PDE and Hironaka.

Working as an applied mathematician I realized the importance of the
resolution of singularities while working with non-linear partial differential
equations in late 1950s. I understood that we have to deal with a sequence
of resolutions (blow-ups), by changing variables and adding new ones. So,
I was fully prepared to embrace the great result of Hironaka. We studied
his paper for a year. Hironaka’s theorem seems to have nothing to do with
non-linear PDE. But for me it just shows the unity of mathematics.

Let me emphasize here that we still do not have a “Hironaka” theory
for non-linear PDE.

5.2. Tricomi equation.

When the books by Bourbaki started to appear in Moscow, I asked
”In which volume a fundamental solution of the Tricomi equation will be
published?”. Bourbaki did not publish this volume and it is time to do it
myself.

The Tricomi equation is

0%u N *u f
Y 0u2 oy2 7
It is elliptic for y > 0 and hyperbolic for y < 0. With J. Barros-Neto
we found fundamental solutions for the Tricomi equation continuing works
by Leray, Agmon and others.
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